Open channel structure of MscL and the gating mechanism of mechanosensitive channels

Mechanosensitive channels act as membrane-embedded mechano-electrical switches, opening a large water-filled pore in response to lipid bilayer deformations. This process is critical to the response of living organisms to direct physical stimulation, such as in touch, hearing and osmoregulation. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2002-08, Vol.418 (6901), p.942-948
Hauptverfasser: Perozo, Eduardo, Cortes, D. Marien, Sompornpisut, Pornthep, Kloda, Anna, Martinac, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 948
container_issue 6901
container_start_page 942
container_title Nature (London)
container_volume 418
creator Perozo, Eduardo
Cortes, D. Marien
Sompornpisut, Pornthep
Kloda, Anna
Martinac, Boris
description Mechanosensitive channels act as membrane-embedded mechano-electrical switches, opening a large water-filled pore in response to lipid bilayer deformations. This process is critical to the response of living organisms to direct physical stimulation, such as in touch, hearing and osmoregulation. Here, we have determined the structural rearrangements that underlie these events in the large prokaryotic mechanosensitive channel (MscL) using electron paramagnetic resonance spectroscopy and site-directed spin labelling. MscL was trapped in both the open and in an intermediate closed state by modulating bilayer morphology. Transition to the intermediate state is characterized by small movements in the first transmembrane helix (TM1). Subsequent transitions to the open state are accompanied by massive rearrangements in both TM1 and TM2, as shown by large increases in probe dynamics, solvent accessibility and the elimination of all intersubunit spin-spin interactions. The open state is highly dynamic, supporting a water-filled pore of at least 25 A, lined mostly by TM1. These structures suggest a plausible molecular mechanism of gating in mechanosensitive channels.
doi_str_mv 10.1038/nature00992
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743377594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A187554564</galeid><sourcerecordid>A187554564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c631t-5168f9aaf26e7c7c9298807c9353cdae355c74b83812bbcb9615c949a529227a3</originalsourceid><addsrcrecordid>eNqF0tuL1DAUB-AgijuOPvkuVVAR6Zr75XFZvCyMLOj6XNLMaTdLm84mreh_b4aOzowsSh4OCV9-h4SD0FOCTwlm-l2w4xQBY2PoPbQgXMmSS63uowXGVJdYM3mCHqV0gzEWRPGH6IRQYrRgZoGuLjcQCndtQ4CuSGOc3DatGJric3KrwoZ1MV5D0drRh7boYUt96rdg3gwJQvKj_w6_Y9Jj9KCxXYInu7pE3z68vzr_VK4uP16cn61KJxkZS0Gkboy1DZWgnHKGGq1xrkwwt7bAhHCK15ppQuva1UYS4Qw3VlBDqbJsiV7PuZs43E6Qxqr3yUHX2QDDlCrFGVNKGJ7lq39LipkUue8SvfgL3gxTDPkVFcVc5B-l5j-IG8EwyaicUWs7qHxohjFa10KAaLshQOPz8RnRSgguJN-HHnm38bfVITq9A-W1ht67O1PfHF3IZoQfY2unlKqLr1-O7dvZujikFKGpNtH3Nv6sCK62o1YdjFrWz3afMNU9rPd2N1sZvNwBm5ztmmiD82nvmJaESpzd89nN6X_AYbNfOx_jjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204500229</pqid></control><display><type>article</type><title>Open channel structure of MscL and the gating mechanism of mechanosensitive channels</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Perozo, Eduardo ; Cortes, D. Marien ; Sompornpisut, Pornthep ; Kloda, Anna ; Martinac, Boris</creator><creatorcontrib>Perozo, Eduardo ; Cortes, D. Marien ; Sompornpisut, Pornthep ; Kloda, Anna ; Martinac, Boris</creatorcontrib><description>Mechanosensitive channels act as membrane-embedded mechano-electrical switches, opening a large water-filled pore in response to lipid bilayer deformations. This process is critical to the response of living organisms to direct physical stimulation, such as in touch, hearing and osmoregulation. Here, we have determined the structural rearrangements that underlie these events in the large prokaryotic mechanosensitive channel (MscL) using electron paramagnetic resonance spectroscopy and site-directed spin labelling. MscL was trapped in both the open and in an intermediate closed state by modulating bilayer morphology. Transition to the intermediate state is characterized by small movements in the first transmembrane helix (TM1). Subsequent transitions to the open state are accompanied by massive rearrangements in both TM1 and TM2, as shown by large increases in probe dynamics, solvent accessibility and the elimination of all intersubunit spin-spin interactions. The open state is highly dynamic, supporting a water-filled pore of at least 25 A, lined mostly by TM1. These structures suggest a plausible molecular mechanism of gating in mechanosensitive channels.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature00992</identifier><identifier>PMID: 12198539</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing</publisher><subject>Biological and medical sciences ; Cell membranes. Ionic channels. Membrane pores ; Cell structures and functions ; Computer Simulation ; Crystal structure ; Crystals ; Cysteine - genetics ; Cysteine - metabolism ; Electron Spin Resonance Spectroscopy ; Escherichia coli Proteins ; Fundamental and applied biological sciences. Psychology ; Ion Channel Gating ; Ion Channels - chemistry ; Ion Channels - genetics ; Ion Channels - metabolism ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Lipids ; Membrane Proteins - chemistry ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Membranes ; Models, Molecular ; Molecular and cellular biology ; Molecular biology ; Open channels ; Osmoregulation ; Protein Structure, Quaternary ; Solvents ; Space life sciences ; Spectrum analysis ; Spin Labels ; Thermodynamics</subject><ispartof>Nature (London), 2002-08, Vol.418 (6901), p.942-948</ispartof><rights>2002 INIST-CNRS</rights><rights>COPYRIGHT 2002 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Aug 29, 2002</rights><rights>Copyright Nature Publishing Group Aug 29, 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c631t-5168f9aaf26e7c7c9298807c9353cdae355c74b83812bbcb9615c949a529227a3</citedby><cites>FETCH-LOGICAL-c631t-5168f9aaf26e7c7c9298807c9353cdae355c74b83812bbcb9615c949a529227a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,2731,27933,27934</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13861260$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12198539$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perozo, Eduardo</creatorcontrib><creatorcontrib>Cortes, D. Marien</creatorcontrib><creatorcontrib>Sompornpisut, Pornthep</creatorcontrib><creatorcontrib>Kloda, Anna</creatorcontrib><creatorcontrib>Martinac, Boris</creatorcontrib><title>Open channel structure of MscL and the gating mechanism of mechanosensitive channels</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>Mechanosensitive channels act as membrane-embedded mechano-electrical switches, opening a large water-filled pore in response to lipid bilayer deformations. This process is critical to the response of living organisms to direct physical stimulation, such as in touch, hearing and osmoregulation. Here, we have determined the structural rearrangements that underlie these events in the large prokaryotic mechanosensitive channel (MscL) using electron paramagnetic resonance spectroscopy and site-directed spin labelling. MscL was trapped in both the open and in an intermediate closed state by modulating bilayer morphology. Transition to the intermediate state is characterized by small movements in the first transmembrane helix (TM1). Subsequent transitions to the open state are accompanied by massive rearrangements in both TM1 and TM2, as shown by large increases in probe dynamics, solvent accessibility and the elimination of all intersubunit spin-spin interactions. The open state is highly dynamic, supporting a water-filled pore of at least 25 A, lined mostly by TM1. These structures suggest a plausible molecular mechanism of gating in mechanosensitive channels.</description><subject>Biological and medical sciences</subject><subject>Cell membranes. Ionic channels. Membrane pores</subject><subject>Cell structures and functions</subject><subject>Computer Simulation</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Cysteine - genetics</subject><subject>Cysteine - metabolism</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Escherichia coli Proteins</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Ion Channel Gating</subject><subject>Ion Channels - chemistry</subject><subject>Ion Channels - genetics</subject><subject>Ion Channels - metabolism</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Lipids</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Molecular and cellular biology</subject><subject>Molecular biology</subject><subject>Open channels</subject><subject>Osmoregulation</subject><subject>Protein Structure, Quaternary</subject><subject>Solvents</subject><subject>Space life sciences</subject><subject>Spectrum analysis</subject><subject>Spin Labels</subject><subject>Thermodynamics</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0tuL1DAUB-AgijuOPvkuVVAR6Zr75XFZvCyMLOj6XNLMaTdLm84mreh_b4aOzowsSh4OCV9-h4SD0FOCTwlm-l2w4xQBY2PoPbQgXMmSS63uowXGVJdYM3mCHqV0gzEWRPGH6IRQYrRgZoGuLjcQCndtQ4CuSGOc3DatGJric3KrwoZ1MV5D0drRh7boYUt96rdg3gwJQvKj_w6_Y9Jj9KCxXYInu7pE3z68vzr_VK4uP16cn61KJxkZS0Gkboy1DZWgnHKGGq1xrkwwt7bAhHCK15ppQuva1UYS4Qw3VlBDqbJsiV7PuZs43E6Qxqr3yUHX2QDDlCrFGVNKGJ7lq39LipkUue8SvfgL3gxTDPkVFcVc5B-l5j-IG8EwyaicUWs7qHxohjFa10KAaLshQOPz8RnRSgguJN-HHnm38bfVITq9A-W1ht67O1PfHF3IZoQfY2unlKqLr1-O7dvZujikFKGpNtH3Nv6sCK62o1YdjFrWz3afMNU9rPd2N1sZvNwBm5ztmmiD82nvmJaESpzd89nN6X_AYbNfOx_jjg</recordid><startdate>20020829</startdate><enddate>20020829</enddate><creator>Perozo, Eduardo</creator><creator>Cortes, D. Marien</creator><creator>Sompornpisut, Pornthep</creator><creator>Kloda, Anna</creator><creator>Martinac, Boris</creator><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>3V.</scope><scope>7RV</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>KB0</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020829</creationdate><title>Open channel structure of MscL and the gating mechanism of mechanosensitive channels</title><author>Perozo, Eduardo ; Cortes, D. Marien ; Sompornpisut, Pornthep ; Kloda, Anna ; Martinac, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c631t-5168f9aaf26e7c7c9298807c9353cdae355c74b83812bbcb9615c949a529227a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Biological and medical sciences</topic><topic>Cell membranes. Ionic channels. Membrane pores</topic><topic>Cell structures and functions</topic><topic>Computer Simulation</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Cysteine - genetics</topic><topic>Cysteine - metabolism</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Escherichia coli Proteins</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Ion Channel Gating</topic><topic>Ion Channels - chemistry</topic><topic>Ion Channels - genetics</topic><topic>Ion Channels - metabolism</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Lipids</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Molecular and cellular biology</topic><topic>Molecular biology</topic><topic>Open channels</topic><topic>Osmoregulation</topic><topic>Protein Structure, Quaternary</topic><topic>Solvents</topic><topic>Space life sciences</topic><topic>Spectrum analysis</topic><topic>Spin Labels</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perozo, Eduardo</creatorcontrib><creatorcontrib>Cortes, D. Marien</creatorcontrib><creatorcontrib>Sompornpisut, Pornthep</creatorcontrib><creatorcontrib>Kloda, Anna</creatorcontrib><creatorcontrib>Martinac, Boris</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perozo, Eduardo</au><au>Cortes, D. Marien</au><au>Sompornpisut, Pornthep</au><au>Kloda, Anna</au><au>Martinac, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open channel structure of MscL and the gating mechanism of mechanosensitive channels</atitle><jtitle>Nature (London)</jtitle><addtitle>Nature</addtitle><date>2002-08-29</date><risdate>2002</risdate><volume>418</volume><issue>6901</issue><spage>942</spage><epage>948</epage><pages>942-948</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Mechanosensitive channels act as membrane-embedded mechano-electrical switches, opening a large water-filled pore in response to lipid bilayer deformations. This process is critical to the response of living organisms to direct physical stimulation, such as in touch, hearing and osmoregulation. Here, we have determined the structural rearrangements that underlie these events in the large prokaryotic mechanosensitive channel (MscL) using electron paramagnetic resonance spectroscopy and site-directed spin labelling. MscL was trapped in both the open and in an intermediate closed state by modulating bilayer morphology. Transition to the intermediate state is characterized by small movements in the first transmembrane helix (TM1). Subsequent transitions to the open state are accompanied by massive rearrangements in both TM1 and TM2, as shown by large increases in probe dynamics, solvent accessibility and the elimination of all intersubunit spin-spin interactions. The open state is highly dynamic, supporting a water-filled pore of at least 25 A, lined mostly by TM1. These structures suggest a plausible molecular mechanism of gating in mechanosensitive channels.</abstract><cop>London</cop><pub>Nature Publishing</pub><pmid>12198539</pmid><doi>10.1038/nature00992</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2002-08, Vol.418 (6901), p.942-948
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_743377594
source MEDLINE; Nature; Alma/SFX Local Collection
subjects Biological and medical sciences
Cell membranes. Ionic channels. Membrane pores
Cell structures and functions
Computer Simulation
Crystal structure
Crystals
Cysteine - genetics
Cysteine - metabolism
Electron Spin Resonance Spectroscopy
Escherichia coli Proteins
Fundamental and applied biological sciences. Psychology
Ion Channel Gating
Ion Channels - chemistry
Ion Channels - genetics
Ion Channels - metabolism
Lipid Bilayers - chemistry
Lipid Bilayers - metabolism
Lipids
Membrane Proteins - chemistry
Membrane Proteins - genetics
Membrane Proteins - metabolism
Membranes
Models, Molecular
Molecular and cellular biology
Molecular biology
Open channels
Osmoregulation
Protein Structure, Quaternary
Solvents
Space life sciences
Spectrum analysis
Spin Labels
Thermodynamics
title Open channel structure of MscL and the gating mechanism of mechanosensitive channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T00%3A32%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open%20channel%20structure%20of%20MscL%20and%20the%20gating%20mechanism%20of%20mechanosensitive%20channels&rft.jtitle=Nature%20(London)&rft.au=Perozo,%20Eduardo&rft.date=2002-08-29&rft.volume=418&rft.issue=6901&rft.spage=942&rft.epage=948&rft.pages=942-948&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature00992&rft_dat=%3Cgale_proqu%3EA187554564%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204500229&rft_id=info:pmid/12198539&rft_galeid=A187554564&rfr_iscdi=true