Antibody-Based Bio-Nanotube Membranes for Enantiomeric Drug Separations

Synthetic bio-nanotube membranes were developed and used to separate two enantiomers of a chiral drug. These membranes are based on alumina films that have cylindrical pores with monodisperse nanoscopic diameters (for example, 20 nanometers). Silica nanotubes were chemically synthesized within the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2002-06, Vol.296 (5576), p.2198-2200
Hauptverfasser: Lee, Sang Bok, Mitchell, David T., Trofin, Lacramioara, Nevanen, Tarja K., Söderlund, Hans, Martin, Charles R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2200
container_issue 5576
container_start_page 2198
container_title Science (American Association for the Advancement of Science)
container_volume 296
creator Lee, Sang Bok
Mitchell, David T.
Trofin, Lacramioara
Nevanen, Tarja K.
Söderlund, Hans
Martin, Charles R.
description Synthetic bio-nanotube membranes were developed and used to separate two enantiomers of a chiral drug. These membranes are based on alumina films that have cylindrical pores with monodisperse nanoscopic diameters (for example, 20 nanometers). Silica nanotubes were chemically synthesized within the pores of these films, and an antibody that selectively binds one of the enantiomers of the drug was attached to the inner walls of the silica nanotubes. These membranes selectively transport the enantiomer that specifically binds to the antibody, relative to the enantiomer that has lower affinity for the antibody. The solvent dimethyl sulfoxide was used to tune the antibody binding affinity. The enantiomeric selectivity coefficient increases as the inside diameter of the silica nanotubes decreases.
doi_str_mv 10.1126/science.1071396
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743354939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A88612359</galeid><jstor_id>3077113</jstor_id><sourcerecordid>A88612359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c812t-46754721d28d0d081e286f094a434abbd1333200ec133202755e0c49917c9df83</originalsourceid><addsrcrecordid>eNqN0s9v0zAUB_AIgVgZnLkgFCHx47BsfrYTO8e2jDKprIcBV8txXqpUSVzsRGL_PS6NmIoqqHyw9Pzx07P8jaKXQC4BaHblTY2dwUsgAliePYomQPI0ySlhj6MJISxLJBHpWfTM-w0h4SxnT6MzoEQIDmQSLaZdXxe2vE9m2mMZz2qb3OrO9kOB8RdsC6c79HFlXXzd6WBti6428Uc3rOM73GqnQ63zz6MnlW48vhj38-jbp-uv88_JcrW4mU-XiZFA-4RnIuWCQkllSUoiAanMKpJzzRnXRVECY4wSggZ2OxVpisTwPAdh8rKS7Dx6v--7dfbHgL5Xbe0NNk0Y0w5eCc5YynOWB_nu3xJkSiVh_4UgOWQZ38E3f8GNHVwXnqsosAyEIGlAF3u01g2quqts77RZY4dON7bDqg7lqZQZUJbupkyO8LBKbGtzzH848IH0-LNf68F7dXN3ezJdfT-ZzhanUrlYHtCLY9TYpsE1qpCL-eqAX-25cdZ7h5XaurrV7l4BUbu0qzHtakx7uPF6_JChaLF88GO8A3g7Au2NbqoQZlP7B8cEp-y3e7V3G99b9-echTYQgvgLUmQKBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213617705</pqid></control><display><type>article</type><title>Antibody-Based Bio-Nanotube Membranes for Enantiomeric Drug Separations</title><source>MEDLINE</source><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Lee, Sang Bok ; Mitchell, David T. ; Trofin, Lacramioara ; Nevanen, Tarja K. ; Söderlund, Hans ; Martin, Charles R.</creator><creatorcontrib>Lee, Sang Bok ; Mitchell, David T. ; Trofin, Lacramioara ; Nevanen, Tarja K. ; Söderlund, Hans ; Martin, Charles R.</creatorcontrib><description>Synthetic bio-nanotube membranes were developed and used to separate two enantiomers of a chiral drug. These membranes are based on alumina films that have cylindrical pores with monodisperse nanoscopic diameters (for example, 20 nanometers). Silica nanotubes were chemically synthesized within the pores of these films, and an antibody that selectively binds one of the enantiomers of the drug was attached to the inner walls of the silica nanotubes. These membranes selectively transport the enantiomer that specifically binds to the antibody, relative to the enantiomer that has lower affinity for the antibody. The solvent dimethyl sulfoxide was used to tune the antibody binding affinity. The enantiomeric selectivity coefficient increases as the inside diameter of the silica nanotubes decreases.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1071396</identifier><identifier>PMID: 12077410</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Society for the Advancement of Science</publisher><subject>Aluminum Oxide ; Analysis ; Antibodies ; Biological and medical sciences ; Chemistry ; Circles ; Diffusion ; Dimethyl Sulfoxide ; Drugs ; Enantiomers ; General pharmacology ; Magnetic fields ; Medical sciences ; Membranes ; Membranes, Artificial ; Molecules ; Nanotechnology ; Nanotubes ; Narcotics ; Nitriles - chemistry ; Nitriles - immunology ; Nitriles - isolation &amp; purification ; P branes ; Permeability ; Pharmacology. Drug treatments ; Separation (Technology) ; Silicon Dioxide ; Sol gel processes ; Stereoisomerism ; String theory ; Technology, Pharmaceutical ; Triazoles - chemistry ; Triazoles - immunology ; Triazoles - isolation &amp; purification</subject><ispartof>Science (American Association for the Advancement of Science), 2002-06, Vol.296 (5576), p.2198-2200</ispartof><rights>Copyright 2002 American Association for the Advancement of Science</rights><rights>2002 INIST-CNRS</rights><rights>COPYRIGHT 2002 American Association for the Advancement of Science</rights><rights>COPYRIGHT 2002 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Jun 21, 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c812t-46754721d28d0d081e286f094a434abbd1333200ec133202755e0c49917c9df83</citedby><cites>FETCH-LOGICAL-c812t-46754721d28d0d081e286f094a434abbd1333200ec133202755e0c49917c9df83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3077113$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3077113$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2882,2883,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13742310$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12077410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Sang Bok</creatorcontrib><creatorcontrib>Mitchell, David T.</creatorcontrib><creatorcontrib>Trofin, Lacramioara</creatorcontrib><creatorcontrib>Nevanen, Tarja K.</creatorcontrib><creatorcontrib>Söderlund, Hans</creatorcontrib><creatorcontrib>Martin, Charles R.</creatorcontrib><title>Antibody-Based Bio-Nanotube Membranes for Enantiomeric Drug Separations</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Synthetic bio-nanotube membranes were developed and used to separate two enantiomers of a chiral drug. These membranes are based on alumina films that have cylindrical pores with monodisperse nanoscopic diameters (for example, 20 nanometers). Silica nanotubes were chemically synthesized within the pores of these films, and an antibody that selectively binds one of the enantiomers of the drug was attached to the inner walls of the silica nanotubes. These membranes selectively transport the enantiomer that specifically binds to the antibody, relative to the enantiomer that has lower affinity for the antibody. The solvent dimethyl sulfoxide was used to tune the antibody binding affinity. The enantiomeric selectivity coefficient increases as the inside diameter of the silica nanotubes decreases.</description><subject>Aluminum Oxide</subject><subject>Analysis</subject><subject>Antibodies</subject><subject>Biological and medical sciences</subject><subject>Chemistry</subject><subject>Circles</subject><subject>Diffusion</subject><subject>Dimethyl Sulfoxide</subject><subject>Drugs</subject><subject>Enantiomers</subject><subject>General pharmacology</subject><subject>Magnetic fields</subject><subject>Medical sciences</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Molecules</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Narcotics</subject><subject>Nitriles - chemistry</subject><subject>Nitriles - immunology</subject><subject>Nitriles - isolation &amp; purification</subject><subject>P branes</subject><subject>Permeability</subject><subject>Pharmacology. Drug treatments</subject><subject>Separation (Technology)</subject><subject>Silicon Dioxide</subject><subject>Sol gel processes</subject><subject>Stereoisomerism</subject><subject>String theory</subject><subject>Technology, Pharmaceutical</subject><subject>Triazoles - chemistry</subject><subject>Triazoles - immunology</subject><subject>Triazoles - isolation &amp; purification</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0s9v0zAUB_AIgVgZnLkgFCHx47BsfrYTO8e2jDKprIcBV8txXqpUSVzsRGL_PS6NmIoqqHyw9Pzx07P8jaKXQC4BaHblTY2dwUsgAliePYomQPI0ySlhj6MJISxLJBHpWfTM-w0h4SxnT6MzoEQIDmQSLaZdXxe2vE9m2mMZz2qb3OrO9kOB8RdsC6c79HFlXXzd6WBti6428Uc3rOM73GqnQ63zz6MnlW48vhj38-jbp-uv88_JcrW4mU-XiZFA-4RnIuWCQkllSUoiAanMKpJzzRnXRVECY4wSggZ2OxVpisTwPAdh8rKS7Dx6v--7dfbHgL5Xbe0NNk0Y0w5eCc5YynOWB_nu3xJkSiVh_4UgOWQZ38E3f8GNHVwXnqsosAyEIGlAF3u01g2quqts77RZY4dON7bDqg7lqZQZUJbupkyO8LBKbGtzzH848IH0-LNf68F7dXN3ezJdfT-ZzhanUrlYHtCLY9TYpsE1qpCL-eqAX-25cdZ7h5XaurrV7l4BUbu0qzHtakx7uPF6_JChaLF88GO8A3g7Au2NbqoQZlP7B8cEp-y3e7V3G99b9-echTYQgvgLUmQKBA</recordid><startdate>20020621</startdate><enddate>20020621</enddate><creator>Lee, Sang Bok</creator><creator>Mitchell, David T.</creator><creator>Trofin, Lacramioara</creator><creator>Nevanen, Tarja K.</creator><creator>Söderlund, Hans</creator><creator>Martin, Charles R.</creator><general>American Society for the Advancement of Science</general><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>0-V</scope><scope>3V.</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88B</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9-</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M0P</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>20020621</creationdate><title>Antibody-Based Bio-Nanotube Membranes for Enantiomeric Drug Separations</title><author>Lee, Sang Bok ; Mitchell, David T. ; Trofin, Lacramioara ; Nevanen, Tarja K. ; Söderlund, Hans ; Martin, Charles R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c812t-46754721d28d0d081e286f094a434abbd1333200ec133202755e0c49917c9df83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aluminum Oxide</topic><topic>Analysis</topic><topic>Antibodies</topic><topic>Biological and medical sciences</topic><topic>Chemistry</topic><topic>Circles</topic><topic>Diffusion</topic><topic>Dimethyl Sulfoxide</topic><topic>Drugs</topic><topic>Enantiomers</topic><topic>General pharmacology</topic><topic>Magnetic fields</topic><topic>Medical sciences</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Molecules</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Narcotics</topic><topic>Nitriles - chemistry</topic><topic>Nitriles - immunology</topic><topic>Nitriles - isolation &amp; purification</topic><topic>P branes</topic><topic>Permeability</topic><topic>Pharmacology. Drug treatments</topic><topic>Separation (Technology)</topic><topic>Silicon Dioxide</topic><topic>Sol gel processes</topic><topic>Stereoisomerism</topic><topic>String theory</topic><topic>Technology, Pharmaceutical</topic><topic>Triazoles - chemistry</topic><topic>Triazoles - immunology</topic><topic>Triazoles - isolation &amp; purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sang Bok</creatorcontrib><creatorcontrib>Mitchell, David T.</creatorcontrib><creatorcontrib>Trofin, Lacramioara</creatorcontrib><creatorcontrib>Nevanen, Tarja K.</creatorcontrib><creatorcontrib>Söderlund, Hans</creatorcontrib><creatorcontrib>Martin, Charles R.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agricultural Science Database</collection><collection>Education Database</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sang Bok</au><au>Mitchell, David T.</au><au>Trofin, Lacramioara</au><au>Nevanen, Tarja K.</au><au>Söderlund, Hans</au><au>Martin, Charles R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antibody-Based Bio-Nanotube Membranes for Enantiomeric Drug Separations</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2002-06-21</date><risdate>2002</risdate><volume>296</volume><issue>5576</issue><spage>2198</spage><epage>2200</epage><pages>2198-2200</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Synthetic bio-nanotube membranes were developed and used to separate two enantiomers of a chiral drug. These membranes are based on alumina films that have cylindrical pores with monodisperse nanoscopic diameters (for example, 20 nanometers). Silica nanotubes were chemically synthesized within the pores of these films, and an antibody that selectively binds one of the enantiomers of the drug was attached to the inner walls of the silica nanotubes. These membranes selectively transport the enantiomer that specifically binds to the antibody, relative to the enantiomer that has lower affinity for the antibody. The solvent dimethyl sulfoxide was used to tune the antibody binding affinity. The enantiomeric selectivity coefficient increases as the inside diameter of the silica nanotubes decreases.</abstract><cop>Washington, DC</cop><pub>American Society for the Advancement of Science</pub><pmid>12077410</pmid><doi>10.1126/science.1071396</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2002-06, Vol.296 (5576), p.2198-2200
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_743354939
source MEDLINE; Science Magazine; JSTOR Archive Collection A-Z Listing
subjects Aluminum Oxide
Analysis
Antibodies
Biological and medical sciences
Chemistry
Circles
Diffusion
Dimethyl Sulfoxide
Drugs
Enantiomers
General pharmacology
Magnetic fields
Medical sciences
Membranes
Membranes, Artificial
Molecules
Nanotechnology
Nanotubes
Narcotics
Nitriles - chemistry
Nitriles - immunology
Nitriles - isolation & purification
P branes
Permeability
Pharmacology. Drug treatments
Separation (Technology)
Silicon Dioxide
Sol gel processes
Stereoisomerism
String theory
Technology, Pharmaceutical
Triazoles - chemistry
Triazoles - immunology
Triazoles - isolation & purification
title Antibody-Based Bio-Nanotube Membranes for Enantiomeric Drug Separations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A35%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antibody-Based%20Bio-Nanotube%20Membranes%20for%20Enantiomeric%20Drug%20Separations&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Lee,%20Sang%20Bok&rft.date=2002-06-21&rft.volume=296&rft.issue=5576&rft.spage=2198&rft.epage=2200&rft.pages=2198-2200&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1071396&rft_dat=%3Cgale_proqu%3EA88612359%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213617705&rft_id=info:pmid/12077410&rft_galeid=A88612359&rft_jstor_id=3077113&rfr_iscdi=true