Numerical analysis of thermal and electrochemical phenomena for anode supported microtubular SOFC
A 2D model considering momentum, heat/species transport and electrochemical phenomena, has been proposed for tubular solid oxide fuel cell. The model was validated using experimental polarization curves and the good agreement with the experimental data was attained. The temperature distributions sho...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2009-03, Vol.55 (3), p.771-782 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 782 |
---|---|
container_issue | 3 |
container_start_page | 771 |
container_title | AIChE journal |
container_volume | 55 |
creator | Cui, Daan Cheng, Mojie |
description | A 2D model considering momentum, heat/species transport and electrochemical phenomena, has been proposed for tubular solid oxide fuel cell. The model was validated using experimental polarization curves and the good agreement with the experimental data was attained. The temperature distributions show that temperature varies severely at the tube inlet than at the tube outlet. The heat generation and transfer mechanisms in electrodes, electrolyte and electrochemical reaction interface were investigated. The results show that the overall electrochemical reaction heat is produced at cathode/electrolyte interface, and a small portion of the heat is consumed at anode/electrolyte interface. The heat produced at cathode/electrolyte interface is about five times as much as that consumed at anode/electrolyte interface. Overwhelming part of the heat transfer between cell and outside occurs at cathode external surface. Most current flow goes into anode from a very small area where the current collectors locates. © 2009 American Institute of Chemical Engineers AIChE J, 2009 |
doi_str_mv | 10.1002/aic.11697 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743340896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743340896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4517-8514f8c8b96aac1067fa490e573fe19ee1d4cbb65e638dd51614711599570dbb3</originalsourceid><addsrcrecordid>eNp90U1v1DAQBuAIgcRSOPALiJAo6iGtJ_6KjyWlpdLSVipVj5bjTNiUJA52Ith_X3dTekCCk-XRMyP7nSR5C-QQCMmPTGsPAYSSz5IVcCYzrgh_nqwIIZDFArxMXoVwF2-5LPJVYi7mHn1rTZeawXTb0IbUNem0Qd_vanWKHdrJO7vBfufGDQ6ux8GkjfNRuBrTMI-j8xPWaTTeTXM1d8an15en5evkRWO6gG8ez73k5vTzt_JLtr48Oy-P15llHGRWcGBNYYtKCWMsECEbwxRBLmmDoBChZraqBEdBi7rmIIBJAK4Ul6SuKrqXfFzmjt79nDFMum-Dxa4zA7o5aMkoZaRQIsr9_0pKKZcSeITv_4J3bvYxpqBBKSZpIVhEBwuK_w7BY6NH3_bGbzUQ_bATHXeidzuJ9sPjQBNilI03g23DU0MOedyTyqM7WtyvtsPtvwfq4_Pyz-Rs6WjDhL-fOoz_oYWkkuvbizP9aX319eqWlfok-neLb4zT5ruPr7i5zglQEiMVD1ndAxd1skw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199473864</pqid></control><display><type>article</type><title>Numerical analysis of thermal and electrochemical phenomena for anode supported microtubular SOFC</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cui, Daan ; Cheng, Mojie</creator><creatorcontrib>Cui, Daan ; Cheng, Mojie</creatorcontrib><description>A 2D model considering momentum, heat/species transport and electrochemical phenomena, has been proposed for tubular solid oxide fuel cell. The model was validated using experimental polarization curves and the good agreement with the experimental data was attained. The temperature distributions show that temperature varies severely at the tube inlet than at the tube outlet. The heat generation and transfer mechanisms in electrodes, electrolyte and electrochemical reaction interface were investigated. The results show that the overall electrochemical reaction heat is produced at cathode/electrolyte interface, and a small portion of the heat is consumed at anode/electrolyte interface. The heat produced at cathode/electrolyte interface is about five times as much as that consumed at anode/electrolyte interface. Overwhelming part of the heat transfer between cell and outside occurs at cathode external surface. Most current flow goes into anode from a very small area where the current collectors locates. © 2009 American Institute of Chemical Engineers AIChE J, 2009</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.11697</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Chemical engineering ; Chemical reactions ; current collection ; Electrocatalysis ; Electrodes ; Exact sciences and technology ; Heat and mass transfer. Packings, plates ; Heat transfer ; microtube ; modeling ; Reactors ; Solid oxide fuel cells</subject><ispartof>AIChE journal, 2009-03, Vol.55 (3), p.771-782</ispartof><rights>Copyright © 2009 American Institute of Chemical Engineers (AIChE)</rights><rights>2009 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Mar 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4517-8514f8c8b96aac1067fa490e573fe19ee1d4cbb65e638dd51614711599570dbb3</citedby><cites>FETCH-LOGICAL-c4517-8514f8c8b96aac1067fa490e573fe19ee1d4cbb65e638dd51614711599570dbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.11697$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.11697$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21200092$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Daan</creatorcontrib><creatorcontrib>Cheng, Mojie</creatorcontrib><title>Numerical analysis of thermal and electrochemical phenomena for anode supported microtubular SOFC</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>A 2D model considering momentum, heat/species transport and electrochemical phenomena, has been proposed for tubular solid oxide fuel cell. The model was validated using experimental polarization curves and the good agreement with the experimental data was attained. The temperature distributions show that temperature varies severely at the tube inlet than at the tube outlet. The heat generation and transfer mechanisms in electrodes, electrolyte and electrochemical reaction interface were investigated. The results show that the overall electrochemical reaction heat is produced at cathode/electrolyte interface, and a small portion of the heat is consumed at anode/electrolyte interface. The heat produced at cathode/electrolyte interface is about five times as much as that consumed at anode/electrolyte interface. Overwhelming part of the heat transfer between cell and outside occurs at cathode external surface. Most current flow goes into anode from a very small area where the current collectors locates. © 2009 American Institute of Chemical Engineers AIChE J, 2009</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Chemical reactions</subject><subject>current collection</subject><subject>Electrocatalysis</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>Heat and mass transfer. Packings, plates</subject><subject>Heat transfer</subject><subject>microtube</subject><subject>modeling</subject><subject>Reactors</subject><subject>Solid oxide fuel cells</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90U1v1DAQBuAIgcRSOPALiJAo6iGtJ_6KjyWlpdLSVipVj5bjTNiUJA52Ith_X3dTekCCk-XRMyP7nSR5C-QQCMmPTGsPAYSSz5IVcCYzrgh_nqwIIZDFArxMXoVwF2-5LPJVYi7mHn1rTZeawXTb0IbUNem0Qd_vanWKHdrJO7vBfufGDQ6ux8GkjfNRuBrTMI-j8xPWaTTeTXM1d8an15en5evkRWO6gG8ez73k5vTzt_JLtr48Oy-P15llHGRWcGBNYYtKCWMsECEbwxRBLmmDoBChZraqBEdBi7rmIIBJAK4Ul6SuKrqXfFzmjt79nDFMum-Dxa4zA7o5aMkoZaRQIsr9_0pKKZcSeITv_4J3bvYxpqBBKSZpIVhEBwuK_w7BY6NH3_bGbzUQ_bATHXeidzuJ9sPjQBNilI03g23DU0MOedyTyqM7WtyvtsPtvwfq4_Pyz-Rs6WjDhL-fOoz_oYWkkuvbizP9aX319eqWlfok-neLb4zT5ruPr7i5zglQEiMVD1ndAxd1skw</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Cui, Daan</creator><creator>Cheng, Mojie</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>American Institute of Chemical Engineers</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>200903</creationdate><title>Numerical analysis of thermal and electrochemical phenomena for anode supported microtubular SOFC</title><author>Cui, Daan ; Cheng, Mojie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4517-8514f8c8b96aac1067fa490e573fe19ee1d4cbb65e638dd51614711599570dbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Chemical reactions</topic><topic>current collection</topic><topic>Electrocatalysis</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>Heat and mass transfer. Packings, plates</topic><topic>Heat transfer</topic><topic>microtube</topic><topic>modeling</topic><topic>Reactors</topic><topic>Solid oxide fuel cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Daan</creatorcontrib><creatorcontrib>Cheng, Mojie</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Daan</au><au>Cheng, Mojie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analysis of thermal and electrochemical phenomena for anode supported microtubular SOFC</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2009-03</date><risdate>2009</risdate><volume>55</volume><issue>3</issue><spage>771</spage><epage>782</epage><pages>771-782</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>A 2D model considering momentum, heat/species transport and electrochemical phenomena, has been proposed for tubular solid oxide fuel cell. The model was validated using experimental polarization curves and the good agreement with the experimental data was attained. The temperature distributions show that temperature varies severely at the tube inlet than at the tube outlet. The heat generation and transfer mechanisms in electrodes, electrolyte and electrochemical reaction interface were investigated. The results show that the overall electrochemical reaction heat is produced at cathode/electrolyte interface, and a small portion of the heat is consumed at anode/electrolyte interface. The heat produced at cathode/electrolyte interface is about five times as much as that consumed at anode/electrolyte interface. Overwhelming part of the heat transfer between cell and outside occurs at cathode external surface. Most current flow goes into anode from a very small area where the current collectors locates. © 2009 American Institute of Chemical Engineers AIChE J, 2009</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.11697</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2009-03, Vol.55 (3), p.771-782 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_743340896 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Chemical engineering Chemical reactions current collection Electrocatalysis Electrodes Exact sciences and technology Heat and mass transfer. Packings, plates Heat transfer microtube modeling Reactors Solid oxide fuel cells |
title | Numerical analysis of thermal and electrochemical phenomena for anode supported microtubular SOFC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analysis%20of%20thermal%20and%20electrochemical%20phenomena%20for%20anode%20supported%20microtubular%20SOFC&rft.jtitle=AIChE%20journal&rft.au=Cui,%20Daan&rft.date=2009-03&rft.volume=55&rft.issue=3&rft.spage=771&rft.epage=782&rft.pages=771-782&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.11697&rft_dat=%3Cproquest_cross%3E743340896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199473864&rft_id=info:pmid/&rfr_iscdi=true |