Near-surface intensification of tornado vortices

An idealized analytical model and numerical large-eddy simulations are used to explore fluid-dynamic mechanisms by which tornadoes may be intensified near the surface relative to conditions aloft. The analytical model generalizes a simple model of Barcilon and Fiedler and Rotunno for a steady superc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2007-07, Vol.64 (7), p.2176-2194
Hauptverfasser: LEWELLEN, D. C, LEWELLEN, W. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2194
container_issue 7
container_start_page 2176
container_title Journal of the atmospheric sciences
container_volume 64
creator LEWELLEN, D. C
LEWELLEN, W. S
description An idealized analytical model and numerical large-eddy simulations are used to explore fluid-dynamic mechanisms by which tornadoes may be intensified near the surface relative to conditions aloft. The analytical model generalizes a simple model of Barcilon and Fiedler and Rotunno for a steady supercritical end-wall vortex to more general vortex corner flows, angular momentum distributions, and time dependence. The model illustrates the role played by the corner flow swirl ratio in determining corner flow structure and intensification; predicts an intensification of near-surface swirl velocities relative to conditions aloft of Iυ ∼ 2 for supercritical end-wall vortices in agreement with earlier analytical, numerical, and laboratory results; and suggests how larger intensification factors might be achieved in some more general corner flows. Examples of the latter are presented using large-eddy simulations. By tuning the lateral inflow boundary conditions near the surface, quasi-steady vortices exhibiting nested inner and outer corner flows and Iυ ∼ 4 are produced. More significantly, these features can be produced without fine tuning, along with an additional doubling (or more) of the intensification, in a broad class of unsteady evolutions producing a dynamic corner flow collapse. These scenarios, triggered purely by changes in the far-field near-surface flow, provide an attractive mechanism for naturally achieving an intense near-surface vortex from a much larger-scale less-intense swirling flow. It is argued that, applied on different scales, this may sometimes play a role in tornadogenesis and/or tornado variability. This phenomenon of corner flow collapse is considered further in a companion paper.
doi_str_mv 10.1175/JAS3965.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743338788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21000944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-986acce3922db2a7d4ce1a43c08afa3ca7ff5b226ec20a4f25ae0730aa5b36ca3</originalsourceid><addsrcrecordid>eNqF0UtLAzEQAOAgCtbqwX9QFBUPW5PJc4-l-KToQT0v0zSBLduNJruC_96UFgRBzWUu38xkZgg5ZnTMmJZXD5NnXio5ZjtkwCTQggpV7pIBpQCFKMHsk4OUljQ_0GxA6KPDWKQ-erRuVLeda1Pta4tdHdpR8KMuxBYXYfQRYldblw7JnscmuaNtHJLXm-uX6V0xe7q9n05mhRWCd0VpFFrreAmwmAPqhbCOoeCWGvTILWrv5RxAOQsUhQeJjmpOEeWcK4t8SC42dd9ieO9d6qpVnaxrGmxd6FOlBefcaGOyPP9TciWZAK7-hcDyVsr8_SE5_QGXoc9raLIxQKUArWRWJ78qroQwVK97Xm6QjSGl6Hz1FusVxs-K0Wp9sWp7sYple7YtiMli4yO2tk7fCaZUUOY5vgBTK5My</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236448076</pqid></control><display><type>article</type><title>Near-surface intensification of tornado vortices</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>LEWELLEN, D. C ; LEWELLEN, W. S</creator><creatorcontrib>LEWELLEN, D. C ; LEWELLEN, W. S</creatorcontrib><description>An idealized analytical model and numerical large-eddy simulations are used to explore fluid-dynamic mechanisms by which tornadoes may be intensified near the surface relative to conditions aloft. The analytical model generalizes a simple model of Barcilon and Fiedler and Rotunno for a steady supercritical end-wall vortex to more general vortex corner flows, angular momentum distributions, and time dependence. The model illustrates the role played by the corner flow swirl ratio in determining corner flow structure and intensification; predicts an intensification of near-surface swirl velocities relative to conditions aloft of Iυ ∼ 2 for supercritical end-wall vortices in agreement with earlier analytical, numerical, and laboratory results; and suggests how larger intensification factors might be achieved in some more general corner flows. Examples of the latter are presented using large-eddy simulations. By tuning the lateral inflow boundary conditions near the surface, quasi-steady vortices exhibiting nested inner and outer corner flows and Iυ ∼ 4 are produced. More significantly, these features can be produced without fine tuning, along with an additional doubling (or more) of the intensification, in a broad class of unsteady evolutions producing a dynamic corner flow collapse. These scenarios, triggered purely by changes in the far-field near-surface flow, provide an attractive mechanism for naturally achieving an intense near-surface vortex from a much larger-scale less-intense swirling flow. It is argued that, applied on different scales, this may sometimes play a role in tornadogenesis and/or tornado variability. This phenomenon of corner flow collapse is considered further in a companion paper.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS3965.1</identifier><identifier>CODEN: JAHSAK</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Amplification ; Angular momentum ; Boundary conditions ; Corner flow ; Doppler radar ; Earth, ocean, space ; Evolution ; Exact sciences and technology ; External geophysics ; Flow ; Flow structures ; Fluid dynamics ; Fluid flow ; Inflow ; Laboratories ; Large eddy simulation ; Large eddy simulations ; Marine ; Mathematical analysis ; Mathematical models ; Meteorology ; Modelling ; Momentum ; Oceanic eddies ; Physics of the high neutral atmosphere ; Pressure distribution ; Simulation ; Speed limits ; Storms ; Surface flow ; Swirling ; Tornadoes ; Velocity ; Vortices</subject><ispartof>Journal of the atmospheric sciences, 2007-07, Vol.64 (7), p.2176-2194</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Meteorological Society Jul 2007</rights><rights>Copyright American Meteorological Society 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-986acce3922db2a7d4ce1a43c08afa3ca7ff5b226ec20a4f25ae0730aa5b36ca3</citedby><cites>FETCH-LOGICAL-c443t-986acce3922db2a7d4ce1a43c08afa3ca7ff5b226ec20a4f25ae0730aa5b36ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3680,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18962936$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LEWELLEN, D. C</creatorcontrib><creatorcontrib>LEWELLEN, W. S</creatorcontrib><title>Near-surface intensification of tornado vortices</title><title>Journal of the atmospheric sciences</title><description>An idealized analytical model and numerical large-eddy simulations are used to explore fluid-dynamic mechanisms by which tornadoes may be intensified near the surface relative to conditions aloft. The analytical model generalizes a simple model of Barcilon and Fiedler and Rotunno for a steady supercritical end-wall vortex to more general vortex corner flows, angular momentum distributions, and time dependence. The model illustrates the role played by the corner flow swirl ratio in determining corner flow structure and intensification; predicts an intensification of near-surface swirl velocities relative to conditions aloft of Iυ ∼ 2 for supercritical end-wall vortices in agreement with earlier analytical, numerical, and laboratory results; and suggests how larger intensification factors might be achieved in some more general corner flows. Examples of the latter are presented using large-eddy simulations. By tuning the lateral inflow boundary conditions near the surface, quasi-steady vortices exhibiting nested inner and outer corner flows and Iυ ∼ 4 are produced. More significantly, these features can be produced without fine tuning, along with an additional doubling (or more) of the intensification, in a broad class of unsteady evolutions producing a dynamic corner flow collapse. These scenarios, triggered purely by changes in the far-field near-surface flow, provide an attractive mechanism for naturally achieving an intense near-surface vortex from a much larger-scale less-intense swirling flow. It is argued that, applied on different scales, this may sometimes play a role in tornadogenesis and/or tornado variability. This phenomenon of corner flow collapse is considered further in a companion paper.</description><subject>Amplification</subject><subject>Angular momentum</subject><subject>Boundary conditions</subject><subject>Corner flow</subject><subject>Doppler radar</subject><subject>Earth, ocean, space</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Flow</subject><subject>Flow structures</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Inflow</subject><subject>Laboratories</subject><subject>Large eddy simulation</subject><subject>Large eddy simulations</subject><subject>Marine</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Modelling</subject><subject>Momentum</subject><subject>Oceanic eddies</subject><subject>Physics of the high neutral atmosphere</subject><subject>Pressure distribution</subject><subject>Simulation</subject><subject>Speed limits</subject><subject>Storms</subject><subject>Surface flow</subject><subject>Swirling</subject><subject>Tornadoes</subject><subject>Velocity</subject><subject>Vortices</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0UtLAzEQAOAgCtbqwX9QFBUPW5PJc4-l-KToQT0v0zSBLduNJruC_96UFgRBzWUu38xkZgg5ZnTMmJZXD5NnXio5ZjtkwCTQggpV7pIBpQCFKMHsk4OUljQ_0GxA6KPDWKQ-erRuVLeda1Pta4tdHdpR8KMuxBYXYfQRYldblw7JnscmuaNtHJLXm-uX6V0xe7q9n05mhRWCd0VpFFrreAmwmAPqhbCOoeCWGvTILWrv5RxAOQsUhQeJjmpOEeWcK4t8SC42dd9ieO9d6qpVnaxrGmxd6FOlBefcaGOyPP9TciWZAK7-hcDyVsr8_SE5_QGXoc9raLIxQKUArWRWJ78qroQwVK97Xm6QjSGl6Hz1FusVxs-K0Wp9sWp7sYple7YtiMli4yO2tk7fCaZUUOY5vgBTK5My</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>LEWELLEN, D. C</creator><creator>LEWELLEN, W. S</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20070701</creationdate><title>Near-surface intensification of tornado vortices</title><author>LEWELLEN, D. C ; LEWELLEN, W. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-986acce3922db2a7d4ce1a43c08afa3ca7ff5b226ec20a4f25ae0730aa5b36ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amplification</topic><topic>Angular momentum</topic><topic>Boundary conditions</topic><topic>Corner flow</topic><topic>Doppler radar</topic><topic>Earth, ocean, space</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Flow</topic><topic>Flow structures</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Inflow</topic><topic>Laboratories</topic><topic>Large eddy simulation</topic><topic>Large eddy simulations</topic><topic>Marine</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Modelling</topic><topic>Momentum</topic><topic>Oceanic eddies</topic><topic>Physics of the high neutral atmosphere</topic><topic>Pressure distribution</topic><topic>Simulation</topic><topic>Speed limits</topic><topic>Storms</topic><topic>Surface flow</topic><topic>Swirling</topic><topic>Tornadoes</topic><topic>Velocity</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LEWELLEN, D. C</creatorcontrib><creatorcontrib>LEWELLEN, W. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LEWELLEN, D. C</au><au>LEWELLEN, W. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near-surface intensification of tornado vortices</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>64</volume><issue>7</issue><spage>2176</spage><epage>2194</epage><pages>2176-2194</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><coden>JAHSAK</coden><abstract>An idealized analytical model and numerical large-eddy simulations are used to explore fluid-dynamic mechanisms by which tornadoes may be intensified near the surface relative to conditions aloft. The analytical model generalizes a simple model of Barcilon and Fiedler and Rotunno for a steady supercritical end-wall vortex to more general vortex corner flows, angular momentum distributions, and time dependence. The model illustrates the role played by the corner flow swirl ratio in determining corner flow structure and intensification; predicts an intensification of near-surface swirl velocities relative to conditions aloft of Iυ ∼ 2 for supercritical end-wall vortices in agreement with earlier analytical, numerical, and laboratory results; and suggests how larger intensification factors might be achieved in some more general corner flows. Examples of the latter are presented using large-eddy simulations. By tuning the lateral inflow boundary conditions near the surface, quasi-steady vortices exhibiting nested inner and outer corner flows and Iυ ∼ 4 are produced. More significantly, these features can be produced without fine tuning, along with an additional doubling (or more) of the intensification, in a broad class of unsteady evolutions producing a dynamic corner flow collapse. These scenarios, triggered purely by changes in the far-field near-surface flow, provide an attractive mechanism for naturally achieving an intense near-surface vortex from a much larger-scale less-intense swirling flow. It is argued that, applied on different scales, this may sometimes play a role in tornadogenesis and/or tornado variability. This phenomenon of corner flow collapse is considered further in a companion paper.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS3965.1</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4928
ispartof Journal of the atmospheric sciences, 2007-07, Vol.64 (7), p.2176-2194
issn 0022-4928
1520-0469
language eng
recordid cdi_proquest_miscellaneous_743338788
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Amplification
Angular momentum
Boundary conditions
Corner flow
Doppler radar
Earth, ocean, space
Evolution
Exact sciences and technology
External geophysics
Flow
Flow structures
Fluid dynamics
Fluid flow
Inflow
Laboratories
Large eddy simulation
Large eddy simulations
Marine
Mathematical analysis
Mathematical models
Meteorology
Modelling
Momentum
Oceanic eddies
Physics of the high neutral atmosphere
Pressure distribution
Simulation
Speed limits
Storms
Surface flow
Swirling
Tornadoes
Velocity
Vortices
title Near-surface intensification of tornado vortices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near-surface%20intensification%20of%20tornado%20vortices&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=LEWELLEN,%20D.%20C&rft.date=2007-07-01&rft.volume=64&rft.issue=7&rft.spage=2176&rft.epage=2194&rft.pages=2176-2194&rft.issn=0022-4928&rft.eissn=1520-0469&rft.coden=JAHSAK&rft_id=info:doi/10.1175/JAS3965.1&rft_dat=%3Cproquest_cross%3E21000944%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236448076&rft_id=info:pmid/&rfr_iscdi=true