An enantiomerically pure hydrogen-bonded assembly

Chiral molecules have asymmetric arrangements of atoms, forming structures that are non-superposable mirror images of each other. Specific mirror images ('enantiomers') may be obtained either from enantiomerically pure precursor compounds, through enantioselective synthesis, or by resoluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2000-11, Vol.408 (6809), p.181-184
Hauptverfasser: Reinhoudt, David N, Prins, Leonard J, De Jong, Feike, Timmerman, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chiral molecules have asymmetric arrangements of atoms, forming structures that are non-superposable mirror images of each other. Specific mirror images ('enantiomers') may be obtained either from enantiomerically pure precursor compounds, through enantioselective synthesis, or by resolution of so-called racemic mixtures of opposite enantiomers, provided that racemization (the spontaneous interconversion of enantiomers) is sufficiently slow. Non-covalent assemblies can similarly adopt chiral supramolecular structures, and if they are held together by relatively strong interactions, such as metal coordination, methods analogous to those used to obtain chiral molecules yield enantiomerically pure non-covalent products. But the resolution of assemblies formed through weak interactions, such as hydrogen-bonding, remains challenging, reflecting their lower stability and significantly higher susceptibility to racemization. Here we report the design of supramolecular structures from achiral calix[4]arene dimelamines and cyanurates, which form multiple cooperative hydrogen bonds that together provide sufficient stability to allow the isolation of enantiomerically pure assemblies. Our design strategy is based on a non-covalent 'chiral memory' concept, whereby we first use chiral barbiturates to induce the supramolecular chirality in a hydrogen-bonded assembly, and then substitute them by achiral cyanurates. The stability of the resultant chiral assemblies in benzene, a non-polar solvent not competing for hydrogen bonds, is manifested by a half-life to racemization of more than four days at room temperature.
ISSN:0028-0836
1476-4687
DOI:10.1038/35041530