Nonmonotone Globalization Techniques for the Barzilai-Borwein Gradient Method

In this paper we propose new globalization strategies for the Barzilai and Borwein gradient method, based on suitable relaxations of the monotonicity requirements. In particular, we define a class of algorithms that combine nonmonotone watchdog techniques with nonmonotone linesearch rules and we pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 2002-11, Vol.23 (2), p.143-143
Hauptverfasser: Grippo, L, Sciandrone, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue 2
container_start_page 143
container_title Computational optimization and applications
container_volume 23
creator Grippo, L
Sciandrone, M
description In this paper we propose new globalization strategies for the Barzilai and Borwein gradient method, based on suitable relaxations of the monotonicity requirements. In particular, we define a class of algorithms that combine nonmonotone watchdog techniques with nonmonotone linesearch rules and we prove the global convergence of these schemes. Then we perform an extensive computational study, which shows the effectiveness of the proposed approach in the solution of large dimensional unconstrained optimization problems. [PUBLICATION ABSTRACT]
doi_str_mv 10.1023/A:1020587701058
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_743333929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>330919541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-9bf452f8aa071ed3195bf39e5fdc42f69e2247eadfa9a881241983311b4be80d3</originalsourceid><addsrcrecordid>eNpdjjtPwzAYRS0EEqEws1osTAE_Y5utrSAgtbCUOXKSz4qr1IbEEVJ_PUEwcZezHF0dhK4puaOE8fvlwwwitVKEzjhBGZWK50wbcYoyYliRF4Twc3QxjntCiFGcZWj7GsMhhphiAFz2sba9P9rkY8A7aLrgPycYsYsDTh3glR2Ovrc-X8XhC3zA5WBbDyHhLaQutpfozNl-hKs_LtD70-Nu_Zxv3sqX9XKTN0zqlJvaCcmctpYoCi2nRtaOG5CubQRzhQHGhALbOmus1pQJajTnlNaiBk1avkC3v78fQ_wJTNXBjw30vQ0Qp7FSgs8zzMzmzT9zH6chzHEVo7IQtCgM_wa5lF2j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215641669</pqid></control><display><type>article</type><title>Nonmonotone Globalization Techniques for the Barzilai-Borwein Gradient Method</title><source>SpringerLink Journals</source><creator>Grippo, L ; Sciandrone, M</creator><creatorcontrib>Grippo, L ; Sciandrone, M</creatorcontrib><description>In this paper we propose new globalization strategies for the Barzilai and Borwein gradient method, based on suitable relaxations of the monotonicity requirements. In particular, we define a class of algorithms that combine nonmonotone watchdog techniques with nonmonotone linesearch rules and we prove the global convergence of these schemes. Then we perform an extensive computational study, which shows the effectiveness of the proposed approach in the solution of large dimensional unconstrained optimization problems. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1023/A:1020587701058</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Algorithms ; Globalization ; Mathematics ; Methods ; Optimization</subject><ispartof>Computational optimization and applications, 2002-11, Vol.23 (2), p.143-143</ispartof><rights>Copyright Kluwer Academic Publishers Nov 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-9bf452f8aa071ed3195bf39e5fdc42f69e2247eadfa9a881241983311b4be80d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Grippo, L</creatorcontrib><creatorcontrib>Sciandrone, M</creatorcontrib><title>Nonmonotone Globalization Techniques for the Barzilai-Borwein Gradient Method</title><title>Computational optimization and applications</title><description>In this paper we propose new globalization strategies for the Barzilai and Borwein gradient method, based on suitable relaxations of the monotonicity requirements. In particular, we define a class of algorithms that combine nonmonotone watchdog techniques with nonmonotone linesearch rules and we prove the global convergence of these schemes. Then we perform an extensive computational study, which shows the effectiveness of the proposed approach in the solution of large dimensional unconstrained optimization problems. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Globalization</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Optimization</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdjjtPwzAYRS0EEqEws1osTAE_Y5utrSAgtbCUOXKSz4qr1IbEEVJ_PUEwcZezHF0dhK4puaOE8fvlwwwitVKEzjhBGZWK50wbcYoyYliRF4Twc3QxjntCiFGcZWj7GsMhhphiAFz2sba9P9rkY8A7aLrgPycYsYsDTh3glR2Ovrc-X8XhC3zA5WBbDyHhLaQutpfozNl-hKs_LtD70-Nu_Zxv3sqX9XKTN0zqlJvaCcmctpYoCi2nRtaOG5CubQRzhQHGhALbOmus1pQJajTnlNaiBk1avkC3v78fQ_wJTNXBjw30vQ0Qp7FSgs8zzMzmzT9zH6chzHEVo7IQtCgM_wa5lF2j</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>Grippo, L</creator><creator>Sciandrone, M</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20021101</creationdate><title>Nonmonotone Globalization Techniques for the Barzilai-Borwein Gradient Method</title><author>Grippo, L ; Sciandrone, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-9bf452f8aa071ed3195bf39e5fdc42f69e2247eadfa9a881241983311b4be80d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Globalization</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grippo, L</creatorcontrib><creatorcontrib>Sciandrone, M</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grippo, L</au><au>Sciandrone, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonmonotone Globalization Techniques for the Barzilai-Borwein Gradient Method</atitle><jtitle>Computational optimization and applications</jtitle><date>2002-11-01</date><risdate>2002</risdate><volume>23</volume><issue>2</issue><spage>143</spage><epage>143</epage><pages>143-143</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>In this paper we propose new globalization strategies for the Barzilai and Borwein gradient method, based on suitable relaxations of the monotonicity requirements. In particular, we define a class of algorithms that combine nonmonotone watchdog techniques with nonmonotone linesearch rules and we prove the global convergence of these schemes. Then we perform an extensive computational study, which shows the effectiveness of the proposed approach in the solution of large dimensional unconstrained optimization problems. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1020587701058</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-6003
ispartof Computational optimization and applications, 2002-11, Vol.23 (2), p.143-143
issn 0926-6003
1573-2894
language eng
recordid cdi_proquest_miscellaneous_743333929
source SpringerLink Journals
subjects Algorithms
Globalization
Mathematics
Methods
Optimization
title Nonmonotone Globalization Techniques for the Barzilai-Borwein Gradient Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonmonotone%20Globalization%20Techniques%20for%20the%20Barzilai-Borwein%20Gradient%20Method&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Grippo,%20L&rft.date=2002-11-01&rft.volume=23&rft.issue=2&rft.spage=143&rft.epage=143&rft.pages=143-143&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1023/A:1020587701058&rft_dat=%3Cproquest%3E330919541%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215641669&rft_id=info:pmid/&rfr_iscdi=true