Nonmonotone Globalization Techniques for the Barzilai-Borwein Gradient Method
In this paper we propose new globalization strategies for the Barzilai and Borwein gradient method, based on suitable relaxations of the monotonicity requirements. In particular, we define a class of algorithms that combine nonmonotone watchdog techniques with nonmonotone linesearch rules and we pro...
Gespeichert in:
Veröffentlicht in: | Computational optimization and applications 2002-11, Vol.23 (2), p.143-143 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 143 |
---|---|
container_issue | 2 |
container_start_page | 143 |
container_title | Computational optimization and applications |
container_volume | 23 |
creator | Grippo, L Sciandrone, M |
description | In this paper we propose new globalization strategies for the Barzilai and Borwein gradient method, based on suitable relaxations of the monotonicity requirements. In particular, we define a class of algorithms that combine nonmonotone watchdog techniques with nonmonotone linesearch rules and we prove the global convergence of these schemes. Then we perform an extensive computational study, which shows the effectiveness of the proposed approach in the solution of large dimensional unconstrained optimization problems. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1023/A:1020587701058 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_743333929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>330919541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-9bf452f8aa071ed3195bf39e5fdc42f69e2247eadfa9a881241983311b4be80d3</originalsourceid><addsrcrecordid>eNpdjjtPwzAYRS0EEqEws1osTAE_Y5utrSAgtbCUOXKSz4qr1IbEEVJ_PUEwcZezHF0dhK4puaOE8fvlwwwitVKEzjhBGZWK50wbcYoyYliRF4Twc3QxjntCiFGcZWj7GsMhhphiAFz2sba9P9rkY8A7aLrgPycYsYsDTh3glR2Ovrc-X8XhC3zA5WBbDyHhLaQutpfozNl-hKs_LtD70-Nu_Zxv3sqX9XKTN0zqlJvaCcmctpYoCi2nRtaOG5CubQRzhQHGhALbOmus1pQJajTnlNaiBk1avkC3v78fQ_wJTNXBjw30vQ0Qp7FSgs8zzMzmzT9zH6chzHEVo7IQtCgM_wa5lF2j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215641669</pqid></control><display><type>article</type><title>Nonmonotone Globalization Techniques for the Barzilai-Borwein Gradient Method</title><source>SpringerLink Journals</source><creator>Grippo, L ; Sciandrone, M</creator><creatorcontrib>Grippo, L ; Sciandrone, M</creatorcontrib><description>In this paper we propose new globalization strategies for the Barzilai and Borwein gradient method, based on suitable relaxations of the monotonicity requirements. In particular, we define a class of algorithms that combine nonmonotone watchdog techniques with nonmonotone linesearch rules and we prove the global convergence of these schemes. Then we perform an extensive computational study, which shows the effectiveness of the proposed approach in the solution of large dimensional unconstrained optimization problems. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1023/A:1020587701058</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Algorithms ; Globalization ; Mathematics ; Methods ; Optimization</subject><ispartof>Computational optimization and applications, 2002-11, Vol.23 (2), p.143-143</ispartof><rights>Copyright Kluwer Academic Publishers Nov 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-9bf452f8aa071ed3195bf39e5fdc42f69e2247eadfa9a881241983311b4be80d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Grippo, L</creatorcontrib><creatorcontrib>Sciandrone, M</creatorcontrib><title>Nonmonotone Globalization Techniques for the Barzilai-Borwein Gradient Method</title><title>Computational optimization and applications</title><description>In this paper we propose new globalization strategies for the Barzilai and Borwein gradient method, based on suitable relaxations of the monotonicity requirements. In particular, we define a class of algorithms that combine nonmonotone watchdog techniques with nonmonotone linesearch rules and we prove the global convergence of these schemes. Then we perform an extensive computational study, which shows the effectiveness of the proposed approach in the solution of large dimensional unconstrained optimization problems. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Globalization</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Optimization</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdjjtPwzAYRS0EEqEws1osTAE_Y5utrSAgtbCUOXKSz4qr1IbEEVJ_PUEwcZezHF0dhK4puaOE8fvlwwwitVKEzjhBGZWK50wbcYoyYliRF4Twc3QxjntCiFGcZWj7GsMhhphiAFz2sba9P9rkY8A7aLrgPycYsYsDTh3glR2Ovrc-X8XhC3zA5WBbDyHhLaQutpfozNl-hKs_LtD70-Nu_Zxv3sqX9XKTN0zqlJvaCcmctpYoCi2nRtaOG5CubQRzhQHGhALbOmus1pQJajTnlNaiBk1avkC3v78fQ_wJTNXBjw30vQ0Qp7FSgs8zzMzmzT9zH6chzHEVo7IQtCgM_wa5lF2j</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>Grippo, L</creator><creator>Sciandrone, M</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20021101</creationdate><title>Nonmonotone Globalization Techniques for the Barzilai-Borwein Gradient Method</title><author>Grippo, L ; Sciandrone, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-9bf452f8aa071ed3195bf39e5fdc42f69e2247eadfa9a881241983311b4be80d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Globalization</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grippo, L</creatorcontrib><creatorcontrib>Sciandrone, M</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grippo, L</au><au>Sciandrone, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonmonotone Globalization Techniques for the Barzilai-Borwein Gradient Method</atitle><jtitle>Computational optimization and applications</jtitle><date>2002-11-01</date><risdate>2002</risdate><volume>23</volume><issue>2</issue><spage>143</spage><epage>143</epage><pages>143-143</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>In this paper we propose new globalization strategies for the Barzilai and Borwein gradient method, based on suitable relaxations of the monotonicity requirements. In particular, we define a class of algorithms that combine nonmonotone watchdog techniques with nonmonotone linesearch rules and we prove the global convergence of these schemes. Then we perform an extensive computational study, which shows the effectiveness of the proposed approach in the solution of large dimensional unconstrained optimization problems. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1020587701058</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-6003 |
ispartof | Computational optimization and applications, 2002-11, Vol.23 (2), p.143-143 |
issn | 0926-6003 1573-2894 |
language | eng |
recordid | cdi_proquest_miscellaneous_743333929 |
source | SpringerLink Journals |
subjects | Algorithms Globalization Mathematics Methods Optimization |
title | Nonmonotone Globalization Techniques for the Barzilai-Borwein Gradient Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonmonotone%20Globalization%20Techniques%20for%20the%20Barzilai-Borwein%20Gradient%20Method&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Grippo,%20L&rft.date=2002-11-01&rft.volume=23&rft.issue=2&rft.spage=143&rft.epage=143&rft.pages=143-143&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1023/A:1020587701058&rft_dat=%3Cproquest%3E330919541%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215641669&rft_id=info:pmid/&rfr_iscdi=true |