An Indirect Effect of Ice Nuclei on Atmospheric Radiation

A three-dimensional cloud-resolving model (CRM) with observed large-scale forcing is used to study how ice nuclei (IN) affect the net radiative flux at the top of the atmosphere (TOA). In all the numerical experiments carried out, the cloud ice content in the upper troposphere increases with IN numb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2009, Vol.66 (1), p.41-61
Hauptverfasser: XIPING ZENG, TAO, Wei-Kuo, MINGHUA ZHANG, HOU, Arthur Y, SHAOCHENG XIE, STEPHEN LANG, XIAOWEN LI, STARR, David Oc, XIAOFAN LI, SIMPSON, Joanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61
container_issue 1
container_start_page 41
container_title Journal of the atmospheric sciences
container_volume 66
creator XIPING ZENG
TAO, Wei-Kuo
MINGHUA ZHANG
HOU, Arthur Y
SHAOCHENG XIE
STEPHEN LANG
XIAOWEN LI
STARR, David Oc
XIAOFAN LI
SIMPSON, Joanne
description A three-dimensional cloud-resolving model (CRM) with observed large-scale forcing is used to study how ice nuclei (IN) affect the net radiative flux at the top of the atmosphere (TOA). In all the numerical experiments carried out, the cloud ice content in the upper troposphere increases with IN number concentration via the Bergeron process. As a result, the upward solar flux at the TOA increases whereas the infrared one decreases. Because of the opposite response of the two fluxes to IN concentration, the sensitivity of the net radiative flux at the TOA to IN concentration varies from one case to another. Six tropical and three midlatitudinal field campaigns provide data to model the effect of IN on radiation in different latitudes. Classifying the CRM simulations into tropical and midlatitudinal and then comparing the two types reveals that the indirect effect of IN on radiation is greater in the middle latitudes than in the tropics. Furthermore, comparisons between model results and observations suggest that observational IN data are necessary to evaluate long-term CRM simulations. [PUBLICATION ABSTRACT]
doi_str_mv 10.1175/2008jas2778.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743330011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21399531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-eccc4e6463a1a45310c47bc9c56c5e2011460db32ec7c65fed7b56e390474e7b3</originalsourceid><addsrcrecordid>eNqF0T1PwzAQBmALgUQpjOwRCJgC5684GaOqQFEFEh9z5FwckSqNi50M_HsctWJAArzc8tzrOx0hpxSuKVXyhgGkK-2ZUuk13SMTKhnEIJJsn0wAGItFxtJDcuT9CsJjik5IlnfRoqsaZ7CP5nU9FltHCzTR44CtaSLbRXm_tn7zblyD0bOuGt03tjsmB7VuvTnZ1Sl5u52_zu7j5dPdYpYvY5SM9rFBRGESkXBNtZCcAgpVYoYyQWkYUCoSqErODCpMZG0qVcrE8AyEEkaVfEqutrkbZz8G4_ti3Xg0bas7YwdfKME5h5AT5OWfklGeZWGC_yHwVIb_Azz_AVd2cF1Yt2ApgywN60BQZ78qnggZ5IjiLUJnvXemLjauWWv3WVAoxvMV4_ke8pfxfMU448UuVHvUbe10h43_bmKhRQBI_gUoQJXE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236458200</pqid></control><display><type>article</type><title>An Indirect Effect of Ice Nuclei on Atmospheric Radiation</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>XIPING ZENG ; TAO, Wei-Kuo ; MINGHUA ZHANG ; HOU, Arthur Y ; SHAOCHENG XIE ; STEPHEN LANG ; XIAOWEN LI ; STARR, David Oc ; XIAOFAN LI ; SIMPSON, Joanne</creator><creatorcontrib>XIPING ZENG ; TAO, Wei-Kuo ; MINGHUA ZHANG ; HOU, Arthur Y ; SHAOCHENG XIE ; STEPHEN LANG ; XIAOWEN LI ; STARR, David Oc ; XIAOFAN LI ; SIMPSON, Joanne</creatorcontrib><description>A three-dimensional cloud-resolving model (CRM) with observed large-scale forcing is used to study how ice nuclei (IN) affect the net radiative flux at the top of the atmosphere (TOA). In all the numerical experiments carried out, the cloud ice content in the upper troposphere increases with IN number concentration via the Bergeron process. As a result, the upward solar flux at the TOA increases whereas the infrared one decreases. Because of the opposite response of the two fluxes to IN concentration, the sensitivity of the net radiative flux at the TOA to IN concentration varies from one case to another. Six tropical and three midlatitudinal field campaigns provide data to model the effect of IN on radiation in different latitudes. Classifying the CRM simulations into tropical and midlatitudinal and then comparing the two types reveals that the indirect effect of IN on radiation is greater in the middle latitudes than in the tropics. Furthermore, comparisons between model results and observations suggest that observational IN data are necessary to evaluate long-term CRM simulations. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/2008jas2778.1</identifier><identifier>CODEN: JAHSAK</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Atmospheric aerosols ; Atmospheric radiation ; Climate change ; Clouds ; Downward long wave radiation ; Earth, ocean, space ; Equilibrium ; Exact sciences and technology ; External geophysics ; Fluctuations ; General circulation models ; Ice effects ; Ice nuclei ; Latitude ; Meteorology ; Nucleus ; Numerical experiments ; Physics of the high neutral atmosphere ; Precipitation ; Radiation ; Radiation-cloud interactions ; Sedimentation &amp; deposition ; Simulation ; Solar flux ; Three dimensional models ; Tropical environments ; Troposphere ; Upper troposphere ; Wind shear</subject><ispartof>Journal of the atmospheric sciences, 2009, Vol.66 (1), p.41-61</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright American Meteorological Society Jan 2009</rights><rights>Copyright American Meteorological Society 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-eccc4e6463a1a45310c47bc9c56c5e2011460db32ec7c65fed7b56e390474e7b3</citedby><cites>FETCH-LOGICAL-c521t-eccc4e6463a1a45310c47bc9c56c5e2011460db32ec7c65fed7b56e390474e7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3667,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21174005$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>XIPING ZENG</creatorcontrib><creatorcontrib>TAO, Wei-Kuo</creatorcontrib><creatorcontrib>MINGHUA ZHANG</creatorcontrib><creatorcontrib>HOU, Arthur Y</creatorcontrib><creatorcontrib>SHAOCHENG XIE</creatorcontrib><creatorcontrib>STEPHEN LANG</creatorcontrib><creatorcontrib>XIAOWEN LI</creatorcontrib><creatorcontrib>STARR, David Oc</creatorcontrib><creatorcontrib>XIAOFAN LI</creatorcontrib><creatorcontrib>SIMPSON, Joanne</creatorcontrib><title>An Indirect Effect of Ice Nuclei on Atmospheric Radiation</title><title>Journal of the atmospheric sciences</title><description>A three-dimensional cloud-resolving model (CRM) with observed large-scale forcing is used to study how ice nuclei (IN) affect the net radiative flux at the top of the atmosphere (TOA). In all the numerical experiments carried out, the cloud ice content in the upper troposphere increases with IN number concentration via the Bergeron process. As a result, the upward solar flux at the TOA increases whereas the infrared one decreases. Because of the opposite response of the two fluxes to IN concentration, the sensitivity of the net radiative flux at the TOA to IN concentration varies from one case to another. Six tropical and three midlatitudinal field campaigns provide data to model the effect of IN on radiation in different latitudes. Classifying the CRM simulations into tropical and midlatitudinal and then comparing the two types reveals that the indirect effect of IN on radiation is greater in the middle latitudes than in the tropics. Furthermore, comparisons between model results and observations suggest that observational IN data are necessary to evaluate long-term CRM simulations. [PUBLICATION ABSTRACT]</description><subject>Atmospheric aerosols</subject><subject>Atmospheric radiation</subject><subject>Climate change</subject><subject>Clouds</subject><subject>Downward long wave radiation</subject><subject>Earth, ocean, space</subject><subject>Equilibrium</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluctuations</subject><subject>General circulation models</subject><subject>Ice effects</subject><subject>Ice nuclei</subject><subject>Latitude</subject><subject>Meteorology</subject><subject>Nucleus</subject><subject>Numerical experiments</subject><subject>Physics of the high neutral atmosphere</subject><subject>Precipitation</subject><subject>Radiation</subject><subject>Radiation-cloud interactions</subject><subject>Sedimentation &amp; deposition</subject><subject>Simulation</subject><subject>Solar flux</subject><subject>Three dimensional models</subject><subject>Tropical environments</subject><subject>Troposphere</subject><subject>Upper troposphere</subject><subject>Wind shear</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0T1PwzAQBmALgUQpjOwRCJgC5684GaOqQFEFEh9z5FwckSqNi50M_HsctWJAArzc8tzrOx0hpxSuKVXyhgGkK-2ZUuk13SMTKhnEIJJsn0wAGItFxtJDcuT9CsJjik5IlnfRoqsaZ7CP5nU9FltHCzTR44CtaSLbRXm_tn7zblyD0bOuGt03tjsmB7VuvTnZ1Sl5u52_zu7j5dPdYpYvY5SM9rFBRGESkXBNtZCcAgpVYoYyQWkYUCoSqErODCpMZG0qVcrE8AyEEkaVfEqutrkbZz8G4_ti3Xg0bas7YwdfKME5h5AT5OWfklGeZWGC_yHwVIb_Azz_AVd2cF1Yt2ApgywN60BQZ78qnggZ5IjiLUJnvXemLjauWWv3WVAoxvMV4_ke8pfxfMU448UuVHvUbe10h43_bmKhRQBI_gUoQJXE</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>XIPING ZENG</creator><creator>TAO, Wei-Kuo</creator><creator>MINGHUA ZHANG</creator><creator>HOU, Arthur Y</creator><creator>SHAOCHENG XIE</creator><creator>STEPHEN LANG</creator><creator>XIAOWEN LI</creator><creator>STARR, David Oc</creator><creator>XIAOFAN LI</creator><creator>SIMPSON, Joanne</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>2009</creationdate><title>An Indirect Effect of Ice Nuclei on Atmospheric Radiation</title><author>XIPING ZENG ; TAO, Wei-Kuo ; MINGHUA ZHANG ; HOU, Arthur Y ; SHAOCHENG XIE ; STEPHEN LANG ; XIAOWEN LI ; STARR, David Oc ; XIAOFAN LI ; SIMPSON, Joanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-eccc4e6463a1a45310c47bc9c56c5e2011460db32ec7c65fed7b56e390474e7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Atmospheric aerosols</topic><topic>Atmospheric radiation</topic><topic>Climate change</topic><topic>Clouds</topic><topic>Downward long wave radiation</topic><topic>Earth, ocean, space</topic><topic>Equilibrium</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluctuations</topic><topic>General circulation models</topic><topic>Ice effects</topic><topic>Ice nuclei</topic><topic>Latitude</topic><topic>Meteorology</topic><topic>Nucleus</topic><topic>Numerical experiments</topic><topic>Physics of the high neutral atmosphere</topic><topic>Precipitation</topic><topic>Radiation</topic><topic>Radiation-cloud interactions</topic><topic>Sedimentation &amp; deposition</topic><topic>Simulation</topic><topic>Solar flux</topic><topic>Three dimensional models</topic><topic>Tropical environments</topic><topic>Troposphere</topic><topic>Upper troposphere</topic><topic>Wind shear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>XIPING ZENG</creatorcontrib><creatorcontrib>TAO, Wei-Kuo</creatorcontrib><creatorcontrib>MINGHUA ZHANG</creatorcontrib><creatorcontrib>HOU, Arthur Y</creatorcontrib><creatorcontrib>SHAOCHENG XIE</creatorcontrib><creatorcontrib>STEPHEN LANG</creatorcontrib><creatorcontrib>XIAOWEN LI</creatorcontrib><creatorcontrib>STARR, David Oc</creatorcontrib><creatorcontrib>XIAOFAN LI</creatorcontrib><creatorcontrib>SIMPSON, Joanne</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>XIPING ZENG</au><au>TAO, Wei-Kuo</au><au>MINGHUA ZHANG</au><au>HOU, Arthur Y</au><au>SHAOCHENG XIE</au><au>STEPHEN LANG</au><au>XIAOWEN LI</au><au>STARR, David Oc</au><au>XIAOFAN LI</au><au>SIMPSON, Joanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Indirect Effect of Ice Nuclei on Atmospheric Radiation</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2009</date><risdate>2009</risdate><volume>66</volume><issue>1</issue><spage>41</spage><epage>61</epage><pages>41-61</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><coden>JAHSAK</coden><abstract>A three-dimensional cloud-resolving model (CRM) with observed large-scale forcing is used to study how ice nuclei (IN) affect the net radiative flux at the top of the atmosphere (TOA). In all the numerical experiments carried out, the cloud ice content in the upper troposphere increases with IN number concentration via the Bergeron process. As a result, the upward solar flux at the TOA increases whereas the infrared one decreases. Because of the opposite response of the two fluxes to IN concentration, the sensitivity of the net radiative flux at the TOA to IN concentration varies from one case to another. Six tropical and three midlatitudinal field campaigns provide data to model the effect of IN on radiation in different latitudes. Classifying the CRM simulations into tropical and midlatitudinal and then comparing the two types reveals that the indirect effect of IN on radiation is greater in the middle latitudes than in the tropics. Furthermore, comparisons between model results and observations suggest that observational IN data are necessary to evaluate long-term CRM simulations. [PUBLICATION ABSTRACT]</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2008jas2778.1</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4928
ispartof Journal of the atmospheric sciences, 2009, Vol.66 (1), p.41-61
issn 0022-4928
1520-0469
language eng
recordid cdi_proquest_miscellaneous_743330011
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Atmospheric aerosols
Atmospheric radiation
Climate change
Clouds
Downward long wave radiation
Earth, ocean, space
Equilibrium
Exact sciences and technology
External geophysics
Fluctuations
General circulation models
Ice effects
Ice nuclei
Latitude
Meteorology
Nucleus
Numerical experiments
Physics of the high neutral atmosphere
Precipitation
Radiation
Radiation-cloud interactions
Sedimentation & deposition
Simulation
Solar flux
Three dimensional models
Tropical environments
Troposphere
Upper troposphere
Wind shear
title An Indirect Effect of Ice Nuclei on Atmospheric Radiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Indirect%20Effect%20of%20Ice%20Nuclei%20on%20Atmospheric%20Radiation&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=XIPING%20ZENG&rft.date=2009&rft.volume=66&rft.issue=1&rft.spage=41&rft.epage=61&rft.pages=41-61&rft.issn=0022-4928&rft.eissn=1520-0469&rft.coden=JAHSAK&rft_id=info:doi/10.1175/2008jas2778.1&rft_dat=%3Cproquest_cross%3E21399531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236458200&rft_id=info:pmid/&rfr_iscdi=true