On-Demand Data Broadcasting for Mobile Decision Making

The wide spread of mobile computing devices is transforming the newly emerged e-business world into a mobile e-business one, a world in which hand-held computers are the user's front-ends to access enterprise data. For good mobile decision making, users need to count on up-to-date, business-cri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile networks and applications 2004-12, Vol.9 (6), p.703-714
Hauptverfasser: Sharaf, Mohamed A, Chrysanthis, Panos K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 714
container_issue 6
container_start_page 703
container_title Mobile networks and applications
container_volume 9
creator Sharaf, Mohamed A
Chrysanthis, Panos K
description The wide spread of mobile computing devices is transforming the newly emerged e-business world into a mobile e-business one, a world in which hand-held computers are the user's front-ends to access enterprise data. For good mobile decision making, users need to count on up-to-date, business-critical data. Such data are typically in the form of summarized information tailored to suit the user's analysis interests. In this paper, we are addressing the issue of time and energy efficient delivery of summary tables to mobile users with hand-held computers equipped with OLAP (On-Line Analytical Processing) front-end tools. Towards this, we propose a new on-demand scheduling algorithm, called STOBS, that exploits the derivation semantics among OLAP summary tables. It maximizes the aggregated data sharing between mobile users and reduces the broadcast length for satisfying a set of requests compared to the already existing techniques. The algorithm effectiveness with respect to access time and energy consumption is evaluated using simulation. [PUBLICATION ABSTRACT]
doi_str_mv 10.1023/B:MONE.0000042508.12154.51
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743326377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743326377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-e9801abb5a48d0f920376e1eb9e9fb5c3327eb704d800003d0d87a9776e4e23</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EEqXwD1E3rFI8fsROd_TBQ2rpAhbsLCeZoJQ0Lna64O9xAAmJ2cxIc3Q1cwiZAJ0CZfxmPttsn1ZTOpRgkuopMJBiKuGEjEAqlmqQ_DTOXPNUZPnrObkIYRdxKbUYkWzbpUvc265Klra3ydw7W5U29E33ltTOJxtXNC0mSyyb0Lgu2dj3uLokZ7VtA1799jF5vlu9LB7S9fb-cXG7TkvOaJ9irinYopBW6IrWOaNcZQhY5JjXhSw5ZwoLRUWlhw94RSutbK4iJJDxMbn-ST1493HE0Jt9E0psW9uhOwajRAzIuFKRnPwjd-7ou3iaYVRSDgogQrMfqPQuBI-1Ofhmb_2nAWoGnWZuBp3mT6f51mkk8C_-7Waq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205031711</pqid></control><display><type>article</type><title>On-Demand Data Broadcasting for Mobile Decision Making</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sharaf, Mohamed A ; Chrysanthis, Panos K</creator><creatorcontrib>Sharaf, Mohamed A ; Chrysanthis, Panos K</creatorcontrib><description>The wide spread of mobile computing devices is transforming the newly emerged e-business world into a mobile e-business one, a world in which hand-held computers are the user's front-ends to access enterprise data. For good mobile decision making, users need to count on up-to-date, business-critical data. Such data are typically in the form of summarized information tailored to suit the user's analysis interests. In this paper, we are addressing the issue of time and energy efficient delivery of summary tables to mobile users with hand-held computers equipped with OLAP (On-Line Analytical Processing) front-end tools. Towards this, we propose a new on-demand scheduling algorithm, called STOBS, that exploits the derivation semantics among OLAP summary tables. It maximizes the aggregated data sharing between mobile users and reduces the broadcast length for satisfying a set of requests compared to the already existing techniques. The algorithm effectiveness with respect to access time and energy consumption is evaluated using simulation. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1383-469X</identifier><identifier>EISSN: 1572-8153</identifier><identifier>DOI: 10.1023/B:MONE.0000042508.12154.51</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Algorithms ; Bandwidths ; Computers ; Cost control ; Decision making ; Electronic commerce ; Energy consumption ; Exploitation ; Mathematical models ; Mobile communications networks ; Online analytical processing ; Popularity ; Power ; Scheduling ; Securities markets ; Semantics ; Servers ; Simulation ; Stock exchanges ; Studies ; Wireless networks</subject><ispartof>Mobile networks and applications, 2004-12, Vol.9 (6), p.703-714</ispartof><rights>Copyright (c) 2004 Kluwer Academic Publishers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-e9801abb5a48d0f920376e1eb9e9fb5c3327eb704d800003d0d87a9776e4e23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sharaf, Mohamed A</creatorcontrib><creatorcontrib>Chrysanthis, Panos K</creatorcontrib><title>On-Demand Data Broadcasting for Mobile Decision Making</title><title>Mobile networks and applications</title><description>The wide spread of mobile computing devices is transforming the newly emerged e-business world into a mobile e-business one, a world in which hand-held computers are the user's front-ends to access enterprise data. For good mobile decision making, users need to count on up-to-date, business-critical data. Such data are typically in the form of summarized information tailored to suit the user's analysis interests. In this paper, we are addressing the issue of time and energy efficient delivery of summary tables to mobile users with hand-held computers equipped with OLAP (On-Line Analytical Processing) front-end tools. Towards this, we propose a new on-demand scheduling algorithm, called STOBS, that exploits the derivation semantics among OLAP summary tables. It maximizes the aggregated data sharing between mobile users and reduces the broadcast length for satisfying a set of requests compared to the already existing techniques. The algorithm effectiveness with respect to access time and energy consumption is evaluated using simulation. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Bandwidths</subject><subject>Computers</subject><subject>Cost control</subject><subject>Decision making</subject><subject>Electronic commerce</subject><subject>Energy consumption</subject><subject>Exploitation</subject><subject>Mathematical models</subject><subject>Mobile communications networks</subject><subject>Online analytical processing</subject><subject>Popularity</subject><subject>Power</subject><subject>Scheduling</subject><subject>Securities markets</subject><subject>Semantics</subject><subject>Servers</subject><subject>Simulation</subject><subject>Stock exchanges</subject><subject>Studies</subject><subject>Wireless networks</subject><issn>1383-469X</issn><issn>1572-8153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkMtOwzAQRS0EEqXwD1E3rFI8fsROd_TBQ2rpAhbsLCeZoJQ0Lna64O9xAAmJ2cxIc3Q1cwiZAJ0CZfxmPttsn1ZTOpRgkuopMJBiKuGEjEAqlmqQ_DTOXPNUZPnrObkIYRdxKbUYkWzbpUvc265Klra3ydw7W5U29E33ltTOJxtXNC0mSyyb0Lgu2dj3uLokZ7VtA1799jF5vlu9LB7S9fb-cXG7TkvOaJ9irinYopBW6IrWOaNcZQhY5JjXhSw5ZwoLRUWlhw94RSutbK4iJJDxMbn-ST1493HE0Jt9E0psW9uhOwajRAzIuFKRnPwjd-7ou3iaYVRSDgogQrMfqPQuBI-1Ofhmb_2nAWoGnWZuBp3mT6f51mkk8C_-7Waq</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Sharaf, Mohamed A</creator><creator>Chrysanthis, Panos K</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20041201</creationdate><title>On-Demand Data Broadcasting for Mobile Decision Making</title><author>Sharaf, Mohamed A ; Chrysanthis, Panos K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-e9801abb5a48d0f920376e1eb9e9fb5c3327eb704d800003d0d87a9776e4e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Bandwidths</topic><topic>Computers</topic><topic>Cost control</topic><topic>Decision making</topic><topic>Electronic commerce</topic><topic>Energy consumption</topic><topic>Exploitation</topic><topic>Mathematical models</topic><topic>Mobile communications networks</topic><topic>Online analytical processing</topic><topic>Popularity</topic><topic>Power</topic><topic>Scheduling</topic><topic>Securities markets</topic><topic>Semantics</topic><topic>Servers</topic><topic>Simulation</topic><topic>Stock exchanges</topic><topic>Studies</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharaf, Mohamed A</creatorcontrib><creatorcontrib>Chrysanthis, Panos K</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Mobile networks and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharaf, Mohamed A</au><au>Chrysanthis, Panos K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-Demand Data Broadcasting for Mobile Decision Making</atitle><jtitle>Mobile networks and applications</jtitle><date>2004-12-01</date><risdate>2004</risdate><volume>9</volume><issue>6</issue><spage>703</spage><epage>714</epage><pages>703-714</pages><issn>1383-469X</issn><eissn>1572-8153</eissn><abstract>The wide spread of mobile computing devices is transforming the newly emerged e-business world into a mobile e-business one, a world in which hand-held computers are the user's front-ends to access enterprise data. For good mobile decision making, users need to count on up-to-date, business-critical data. Such data are typically in the form of summarized information tailored to suit the user's analysis interests. In this paper, we are addressing the issue of time and energy efficient delivery of summary tables to mobile users with hand-held computers equipped with OLAP (On-Line Analytical Processing) front-end tools. Towards this, we propose a new on-demand scheduling algorithm, called STOBS, that exploits the derivation semantics among OLAP summary tables. It maximizes the aggregated data sharing between mobile users and reduces the broadcast length for satisfying a set of requests compared to the already existing techniques. The algorithm effectiveness with respect to access time and energy consumption is evaluated using simulation. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/B:MONE.0000042508.12154.51</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1383-469X
ispartof Mobile networks and applications, 2004-12, Vol.9 (6), p.703-714
issn 1383-469X
1572-8153
language eng
recordid cdi_proquest_miscellaneous_743326377
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Bandwidths
Computers
Cost control
Decision making
Electronic commerce
Energy consumption
Exploitation
Mathematical models
Mobile communications networks
Online analytical processing
Popularity
Power
Scheduling
Securities markets
Semantics
Servers
Simulation
Stock exchanges
Studies
Wireless networks
title On-Demand Data Broadcasting for Mobile Decision Making
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-Demand%20Data%20Broadcasting%20for%20Mobile%20Decision%20Making&rft.jtitle=Mobile%20networks%20and%20applications&rft.au=Sharaf,%20Mohamed%20A&rft.date=2004-12-01&rft.volume=9&rft.issue=6&rft.spage=703&rft.epage=714&rft.pages=703-714&rft.issn=1383-469X&rft.eissn=1572-8153&rft_id=info:doi/10.1023/B:MONE.0000042508.12154.51&rft_dat=%3Cproquest_cross%3E743326377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205031711&rft_id=info:pmid/&rfr_iscdi=true