Unified spatial scaling of species and their trophic interactions
Two largely independent bodies of scaling theory address the quantitative relationships between habitat area, species diversity and trophic interactions. Spatial theory within macroecology addresses how species richness scales with area in landscapes, while typically ignoring interspecific interacti...
Gespeichert in:
Veröffentlicht in: | Nature 2004-03, Vol.428 (6979), p.167-171 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 171 |
---|---|
container_issue | 6979 |
container_start_page | 167 |
container_title | Nature |
container_volume | 428 |
creator | Brose, Ulrich Ostling, Annette Harrison, Kateri Martinez, Neo D |
description | Two largely independent bodies of scaling theory address the quantitative relationships between habitat area, species diversity and trophic interactions. Spatial theory within macroecology addresses how species richness scales with area in landscapes, while typically ignoring interspecific interactions. Complexity theory within community ecology addresses how trophic links scale with species richness in food webs, while typically ignoring spatial considerations. Recent studies suggest unifying these theories by demonstrating how spatial patterns influence food-web structure and vice versa. Here, we follow this suggestion by developing and empirically testing a more unified scaling theory. On the basis of power-law species-area relationships, we develop link-area and non-power-law link-species models that accurately predict how trophic links scale with area and species richness of microcosms, lakes and streams from community to metacommunity levels. In contrast to previous models that assume that species richness alone determines the number of trophic links, these models include the species' spatial distribution, and hence extend the domain of complexity theory to metacommunity scales. This generality and predictive success shows how complexity theory and spatial theory can be unified into a much more general theory addressing new domains of ecology. |
doi_str_mv | 10.1038/nature02297 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743320333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A186371530</galeid><sourcerecordid>A186371530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-9e5861536220731d0622aa2081e1ad0dd1b20e6454ab680d8a9bc331816ddbe13</originalsourceid><addsrcrecordid>eNqF0s-L1DAUB_AgijuOnrxLFVREur4kbZI5DoM_FhYF3cVjSZPX2SydtJukoP-9WWZwZ2TU9JAQPv0meTxCnlI4pcDVO6_TFBAYW8h7ZEYrKcpKKHmfzACYKkFxcUIexXgNADWV1UNyQmugVbWQM7K89K5zaIs46uR0X0Sje-fXxdDlLTQOY6G9LdIVulCkMIxXzhTOJwzaJDf4-Jg86HQf8clunpPLD-8vVp_K8y8fz1bL89IIqFO5wFoJWnPBGEhOLeSF1gwURaotWEtbBiiqutKtUGCVXrSGc6qosLZFyufk9TZ3DMPNhDE1GxcN9r32OEyxkRXnDHgec_Lq35JKJpVk_4VUKpVjRYYv_oDXwxR8fm7DIF-ZyVplVG7RWvfYON8NKddojT6Xqh88di5vL6kSXOY6wF3ogTeju2n20ekRlD-LG2eOpr45-CGbhD_SWk8xNmffvh7at3-3y4vvq89HtQlDjAG7Zgxuo8PPhkJz24nNXidm_WxXsqndoL2zu9bL4OUO6Nue64L2xsU9V8uKiiq751u3Tf8N9g_7BeBh7Gk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204542758</pqid></control><display><type>article</type><title>Unified spatial scaling of species and their trophic interactions</title><source>MEDLINE</source><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Brose, Ulrich ; Ostling, Annette ; Harrison, Kateri ; Martinez, Neo D</creator><creatorcontrib>Brose, Ulrich ; Ostling, Annette ; Harrison, Kateri ; Martinez, Neo D</creatorcontrib><description>Two largely independent bodies of scaling theory address the quantitative relationships between habitat area, species diversity and trophic interactions. Spatial theory within macroecology addresses how species richness scales with area in landscapes, while typically ignoring interspecific interactions. Complexity theory within community ecology addresses how trophic links scale with species richness in food webs, while typically ignoring spatial considerations. Recent studies suggest unifying these theories by demonstrating how spatial patterns influence food-web structure and vice versa. Here, we follow this suggestion by developing and empirically testing a more unified scaling theory. On the basis of power-law species-area relationships, we develop link-area and non-power-law link-species models that accurately predict how trophic links scale with area and species richness of microcosms, lakes and streams from community to metacommunity levels. In contrast to previous models that assume that species richness alone determines the number of trophic links, these models include the species' spatial distribution, and hence extend the domain of complexity theory to metacommunity scales. This generality and predictive success shows how complexity theory and spatial theory can be unified into a much more general theory addressing new domains of ecology.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature02297</identifier><identifier>PMID: 15014497</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Biodiversity ; Biological and medical sciences ; Ecology ; Food Chain ; Food chains ; Fresh Water ; Freshwater ; Fundamental and applied biological sciences. Psychology ; General aspects ; Habitats ; Models, Biological ; Regression Analysis ; Species richness ; Species Specificity ; Synecology ; Theory ; Trophic relationships ; United States</subject><ispartof>Nature, 2004-03, Vol.428 (6979), p.167-171</ispartof><rights>2004 INIST-CNRS</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Mar 11, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-9e5861536220731d0622aa2081e1ad0dd1b20e6454ab680d8a9bc331816ddbe13</citedby><cites>FETCH-LOGICAL-c605t-9e5861536220731d0622aa2081e1ad0dd1b20e6454ab680d8a9bc331816ddbe13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2728,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15574164$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15014497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brose, Ulrich</creatorcontrib><creatorcontrib>Ostling, Annette</creatorcontrib><creatorcontrib>Harrison, Kateri</creatorcontrib><creatorcontrib>Martinez, Neo D</creatorcontrib><title>Unified spatial scaling of species and their trophic interactions</title><title>Nature</title><addtitle>Nature</addtitle><description>Two largely independent bodies of scaling theory address the quantitative relationships between habitat area, species diversity and trophic interactions. Spatial theory within macroecology addresses how species richness scales with area in landscapes, while typically ignoring interspecific interactions. Complexity theory within community ecology addresses how trophic links scale with species richness in food webs, while typically ignoring spatial considerations. Recent studies suggest unifying these theories by demonstrating how spatial patterns influence food-web structure and vice versa. Here, we follow this suggestion by developing and empirically testing a more unified scaling theory. On the basis of power-law species-area relationships, we develop link-area and non-power-law link-species models that accurately predict how trophic links scale with area and species richness of microcosms, lakes and streams from community to metacommunity levels. In contrast to previous models that assume that species richness alone determines the number of trophic links, these models include the species' spatial distribution, and hence extend the domain of complexity theory to metacommunity scales. This generality and predictive success shows how complexity theory and spatial theory can be unified into a much more general theory addressing new domains of ecology.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Biodiversity</subject><subject>Biological and medical sciences</subject><subject>Ecology</subject><subject>Food Chain</subject><subject>Food chains</subject><subject>Fresh Water</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Habitats</subject><subject>Models, Biological</subject><subject>Regression Analysis</subject><subject>Species richness</subject><subject>Species Specificity</subject><subject>Synecology</subject><subject>Theory</subject><subject>Trophic relationships</subject><subject>United States</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0s-L1DAUB_AgijuOnrxLFVREur4kbZI5DoM_FhYF3cVjSZPX2SydtJukoP-9WWZwZ2TU9JAQPv0meTxCnlI4pcDVO6_TFBAYW8h7ZEYrKcpKKHmfzACYKkFxcUIexXgNADWV1UNyQmugVbWQM7K89K5zaIs46uR0X0Sje-fXxdDlLTQOY6G9LdIVulCkMIxXzhTOJwzaJDf4-Jg86HQf8clunpPLD-8vVp_K8y8fz1bL89IIqFO5wFoJWnPBGEhOLeSF1gwURaotWEtbBiiqutKtUGCVXrSGc6qosLZFyufk9TZ3DMPNhDE1GxcN9r32OEyxkRXnDHgec_Lq35JKJpVk_4VUKpVjRYYv_oDXwxR8fm7DIF-ZyVplVG7RWvfYON8NKddojT6Xqh88di5vL6kSXOY6wF3ogTeju2n20ekRlD-LG2eOpr45-CGbhD_SWk8xNmffvh7at3-3y4vvq89HtQlDjAG7Zgxuo8PPhkJz24nNXidm_WxXsqndoL2zu9bL4OUO6Nue64L2xsU9V8uKiiq751u3Tf8N9g_7BeBh7Gk</recordid><startdate>20040311</startdate><enddate>20040311</enddate><creator>Brose, Ulrich</creator><creator>Ostling, Annette</creator><creator>Harrison, Kateri</creator><creator>Martinez, Neo D</creator><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040311</creationdate><title>Unified spatial scaling of species and their trophic interactions</title><author>Brose, Ulrich ; Ostling, Annette ; Harrison, Kateri ; Martinez, Neo D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-9e5861536220731d0622aa2081e1ad0dd1b20e6454ab680d8a9bc331816ddbe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Biodiversity</topic><topic>Biological and medical sciences</topic><topic>Ecology</topic><topic>Food Chain</topic><topic>Food chains</topic><topic>Fresh Water</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Habitats</topic><topic>Models, Biological</topic><topic>Regression Analysis</topic><topic>Species richness</topic><topic>Species Specificity</topic><topic>Synecology</topic><topic>Theory</topic><topic>Trophic relationships</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brose, Ulrich</creatorcontrib><creatorcontrib>Ostling, Annette</creatorcontrib><creatorcontrib>Harrison, Kateri</creatorcontrib><creatorcontrib>Martinez, Neo D</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brose, Ulrich</au><au>Ostling, Annette</au><au>Harrison, Kateri</au><au>Martinez, Neo D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unified spatial scaling of species and their trophic interactions</atitle><jtitle>Nature</jtitle><addtitle>Nature</addtitle><date>2004-03-11</date><risdate>2004</risdate><volume>428</volume><issue>6979</issue><spage>167</spage><epage>171</epage><pages>167-171</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Two largely independent bodies of scaling theory address the quantitative relationships between habitat area, species diversity and trophic interactions. Spatial theory within macroecology addresses how species richness scales with area in landscapes, while typically ignoring interspecific interactions. Complexity theory within community ecology addresses how trophic links scale with species richness in food webs, while typically ignoring spatial considerations. Recent studies suggest unifying these theories by demonstrating how spatial patterns influence food-web structure and vice versa. Here, we follow this suggestion by developing and empirically testing a more unified scaling theory. On the basis of power-law species-area relationships, we develop link-area and non-power-law link-species models that accurately predict how trophic links scale with area and species richness of microcosms, lakes and streams from community to metacommunity levels. In contrast to previous models that assume that species richness alone determines the number of trophic links, these models include the species' spatial distribution, and hence extend the domain of complexity theory to metacommunity scales. This generality and predictive success shows how complexity theory and spatial theory can be unified into a much more general theory addressing new domains of ecology.</abstract><cop>London</cop><pub>Nature Publishing</pub><pmid>15014497</pmid><doi>10.1038/nature02297</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature, 2004-03, Vol.428 (6979), p.167-171 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_743320333 |
source | MEDLINE; Nature Journals Online; Alma/SFX Local Collection |
subjects | Animal and plant ecology Animal, plant and microbial ecology Animals Biodiversity Biological and medical sciences Ecology Food Chain Food chains Fresh Water Freshwater Fundamental and applied biological sciences. Psychology General aspects Habitats Models, Biological Regression Analysis Species richness Species Specificity Synecology Theory Trophic relationships United States |
title | Unified spatial scaling of species and their trophic interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A06%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unified%20spatial%20scaling%20of%20species%20and%20their%20trophic%20interactions&rft.jtitle=Nature&rft.au=Brose,%20Ulrich&rft.date=2004-03-11&rft.volume=428&rft.issue=6979&rft.spage=167&rft.epage=171&rft.pages=167-171&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature02297&rft_dat=%3Cgale_proqu%3EA186371530%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204542758&rft_id=info:pmid/15014497&rft_galeid=A186371530&rfr_iscdi=true |