Uncatalyzed and wall-catalyzed forward water-gas shift reaction kinetics
The kinetics of the high‐temperature (1070–1134 K), low‐ and high‐pressure gas‐phase forward water–gas shift reaction (fWGSR) were evaluated in an empty quartz reactor and a quartz reactor packed with quartz particles. The power‐law expression for the reaction rate was consistent with the Bradford m...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2005-05, Vol.51 (5), p.1440-1454 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1454 |
---|---|
container_issue | 5 |
container_start_page | 1440 |
container_title | AIChE journal |
container_volume | 51 |
creator | Bustamante, F. Enick, R. M. Killmeyer, R. P. Howard, B. H. Rothenberger, K. S. Cugini, A. V. Morreale, B. D. Ciocco, M. V. |
description | The kinetics of the high‐temperature (1070–1134 K), low‐ and high‐pressure gas‐phase forward water–gas shift reaction (fWGSR) were evaluated in an empty quartz reactor and a quartz reactor packed with quartz particles. The power‐law expression for the reaction rate was consistent with the Bradford mechanism and was invariant with respect to pressure. The experimental rate constant was lower than that published by Graven and Long, and slightly higher than estimates obtained using the reaction rate expression derived from the Bradford mechanism in conjunction with values of reaction rate constants obtained from the GRI database. Similar experiments conducted using a reactor composed of Inconel® 600, a representative reactor shell material, exhibited substantially enhanced rates of reaction. A simple power‐law rate expression was incorporated into a surface‐catalyzed plug flow reactor (PFR) model to correlate the results between 600 and 900 K. Palladium and palladium–copper alloy surfaces, representative of hydrogen membranes, were also shown to enhance the fWGSR rate, but not as much as the Inconel® 600 surfaces. © 2005 American Institute of Chemical Engineers AIChE J, 2005 |
doi_str_mv | 10.1002/aic.10396 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743317513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>858405761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4996-8ff3934c215730528b9487fb61c29be0c7372d661d9d238f0e84d01291e075c43</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsL32AQRFyMze9ksixFW6XoQq3LkGYSTTudqcmUWp_e6KgFwdW99_Cdw-UAcIzgBYIQ95TTcSEi2wEdxChPmYBsF3QghCiNAtoHByHM4oV5jjtg9Fhp1ahy826KRFVFslZlmW4lW_u18p9yY3z6rEISXpxtEm-UblxdJXNXmcbpcAj2rCqDOfqeXfB4dfkwGKXju-H1oD9ONRUiS3NriSBUY8Q4gQznU0FzbqcZ0lhMDdSccFxkGSpEgUluoclpEZ8VyEDONCVdcNbmLn39ujKhkQsXtClLVZl6FSSnhCDOEInkyR9yVq98FZ-TSAiaYcFwhM5bSPs6BG-sXHq3UH4jEZSfjcrYqPxqNLKn34EqaFVaryrtwtaQ8VgqRJHrtdzalWbzf6DsXw9-ktPW4UJj3n4dys9lFgth8ul2KCd0fAPvRxPJyQe7RJGP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199462952</pqid></control><display><type>article</type><title>Uncatalyzed and wall-catalyzed forward water-gas shift reaction kinetics</title><source>Access via Wiley Online Library</source><creator>Bustamante, F. ; Enick, R. M. ; Killmeyer, R. P. ; Howard, B. H. ; Rothenberger, K. S. ; Cugini, A. V. ; Morreale, B. D. ; Ciocco, M. V.</creator><creatorcontrib>Bustamante, F. ; Enick, R. M. ; Killmeyer, R. P. ; Howard, B. H. ; Rothenberger, K. S. ; Cugini, A. V. ; Morreale, B. D. ; Ciocco, M. V.</creatorcontrib><description>The kinetics of the high‐temperature (1070–1134 K), low‐ and high‐pressure gas‐phase forward water–gas shift reaction (fWGSR) were evaluated in an empty quartz reactor and a quartz reactor packed with quartz particles. The power‐law expression for the reaction rate was consistent with the Bradford mechanism and was invariant with respect to pressure. The experimental rate constant was lower than that published by Graven and Long, and slightly higher than estimates obtained using the reaction rate expression derived from the Bradford mechanism in conjunction with values of reaction rate constants obtained from the GRI database. Similar experiments conducted using a reactor composed of Inconel® 600, a representative reactor shell material, exhibited substantially enhanced rates of reaction. A simple power‐law rate expression was incorporated into a surface‐catalyzed plug flow reactor (PFR) model to correlate the results between 600 and 900 K. Palladium and palladium–copper alloy surfaces, representative of hydrogen membranes, were also shown to enhance the fWGSR rate, but not as much as the Inconel® 600 surfaces. © 2005 American Institute of Chemical Engineers AIChE J, 2005</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.10396</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Catalysis ; Catalytic reactions ; Chemical engineering ; Chemistry ; Exact sciences and technology ; Gases ; General and physical chemistry ; high-temperature ; homogeneous ; Inconel ; kinetics ; palladium ; palladium-copper alloys ; Quartz ; Reaction kinetics ; Reactors ; Surface chemistry ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Water ; water-gas shift</subject><ispartof>AIChE journal, 2005-05, Vol.51 (5), p.1440-1454</ispartof><rights>Copyright © 2005 American Institute of Chemical Engineers (AIChE)</rights><rights>2005 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers May 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4996-8ff3934c215730528b9487fb61c29be0c7372d661d9d238f0e84d01291e075c43</citedby><cites>FETCH-LOGICAL-c4996-8ff3934c215730528b9487fb61c29be0c7372d661d9d238f0e84d01291e075c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.10396$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.10396$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16712701$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bustamante, F.</creatorcontrib><creatorcontrib>Enick, R. M.</creatorcontrib><creatorcontrib>Killmeyer, R. P.</creatorcontrib><creatorcontrib>Howard, B. H.</creatorcontrib><creatorcontrib>Rothenberger, K. S.</creatorcontrib><creatorcontrib>Cugini, A. V.</creatorcontrib><creatorcontrib>Morreale, B. D.</creatorcontrib><creatorcontrib>Ciocco, M. V.</creatorcontrib><title>Uncatalyzed and wall-catalyzed forward water-gas shift reaction kinetics</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>The kinetics of the high‐temperature (1070–1134 K), low‐ and high‐pressure gas‐phase forward water–gas shift reaction (fWGSR) were evaluated in an empty quartz reactor and a quartz reactor packed with quartz particles. The power‐law expression for the reaction rate was consistent with the Bradford mechanism and was invariant with respect to pressure. The experimental rate constant was lower than that published by Graven and Long, and slightly higher than estimates obtained using the reaction rate expression derived from the Bradford mechanism in conjunction with values of reaction rate constants obtained from the GRI database. Similar experiments conducted using a reactor composed of Inconel® 600, a representative reactor shell material, exhibited substantially enhanced rates of reaction. A simple power‐law rate expression was incorporated into a surface‐catalyzed plug flow reactor (PFR) model to correlate the results between 600 and 900 K. Palladium and palladium–copper alloy surfaces, representative of hydrogen membranes, were also shown to enhance the fWGSR rate, but not as much as the Inconel® 600 surfaces. © 2005 American Institute of Chemical Engineers AIChE J, 2005</description><subject>Applied sciences</subject><subject>Catalysis</subject><subject>Catalytic reactions</subject><subject>Chemical engineering</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Gases</subject><subject>General and physical chemistry</subject><subject>high-temperature</subject><subject>homogeneous</subject><subject>Inconel</subject><subject>kinetics</subject><subject>palladium</subject><subject>palladium-copper alloys</subject><subject>Quartz</subject><subject>Reaction kinetics</subject><subject>Reactors</subject><subject>Surface chemistry</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Water</subject><subject>water-gas shift</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKsL32AQRFyMze9ksixFW6XoQq3LkGYSTTudqcmUWp_e6KgFwdW99_Cdw-UAcIzgBYIQ95TTcSEi2wEdxChPmYBsF3QghCiNAtoHByHM4oV5jjtg9Fhp1ahy826KRFVFslZlmW4lW_u18p9yY3z6rEISXpxtEm-UblxdJXNXmcbpcAj2rCqDOfqeXfB4dfkwGKXju-H1oD9ONRUiS3NriSBUY8Q4gQznU0FzbqcZ0lhMDdSccFxkGSpEgUluoclpEZ8VyEDONCVdcNbmLn39ujKhkQsXtClLVZl6FSSnhCDOEInkyR9yVq98FZ-TSAiaYcFwhM5bSPs6BG-sXHq3UH4jEZSfjcrYqPxqNLKn34EqaFVaryrtwtaQ8VgqRJHrtdzalWbzf6DsXw9-ktPW4UJj3n4dys9lFgth8ul2KCd0fAPvRxPJyQe7RJGP</recordid><startdate>200505</startdate><enddate>200505</enddate><creator>Bustamante, F.</creator><creator>Enick, R. M.</creator><creator>Killmeyer, R. P.</creator><creator>Howard, B. H.</creator><creator>Rothenberger, K. S.</creator><creator>Cugini, A. V.</creator><creator>Morreale, B. D.</creator><creator>Ciocco, M. V.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>200505</creationdate><title>Uncatalyzed and wall-catalyzed forward water-gas shift reaction kinetics</title><author>Bustamante, F. ; Enick, R. M. ; Killmeyer, R. P. ; Howard, B. H. ; Rothenberger, K. S. ; Cugini, A. V. ; Morreale, B. D. ; Ciocco, M. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4996-8ff3934c215730528b9487fb61c29be0c7372d661d9d238f0e84d01291e075c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Catalysis</topic><topic>Catalytic reactions</topic><topic>Chemical engineering</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Gases</topic><topic>General and physical chemistry</topic><topic>high-temperature</topic><topic>homogeneous</topic><topic>Inconel</topic><topic>kinetics</topic><topic>palladium</topic><topic>palladium-copper alloys</topic><topic>Quartz</topic><topic>Reaction kinetics</topic><topic>Reactors</topic><topic>Surface chemistry</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Water</topic><topic>water-gas shift</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bustamante, F.</creatorcontrib><creatorcontrib>Enick, R. M.</creatorcontrib><creatorcontrib>Killmeyer, R. P.</creatorcontrib><creatorcontrib>Howard, B. H.</creatorcontrib><creatorcontrib>Rothenberger, K. S.</creatorcontrib><creatorcontrib>Cugini, A. V.</creatorcontrib><creatorcontrib>Morreale, B. D.</creatorcontrib><creatorcontrib>Ciocco, M. V.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bustamante, F.</au><au>Enick, R. M.</au><au>Killmeyer, R. P.</au><au>Howard, B. H.</au><au>Rothenberger, K. S.</au><au>Cugini, A. V.</au><au>Morreale, B. D.</au><au>Ciocco, M. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncatalyzed and wall-catalyzed forward water-gas shift reaction kinetics</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2005-05</date><risdate>2005</risdate><volume>51</volume><issue>5</issue><spage>1440</spage><epage>1454</epage><pages>1440-1454</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>The kinetics of the high‐temperature (1070–1134 K), low‐ and high‐pressure gas‐phase forward water–gas shift reaction (fWGSR) were evaluated in an empty quartz reactor and a quartz reactor packed with quartz particles. The power‐law expression for the reaction rate was consistent with the Bradford mechanism and was invariant with respect to pressure. The experimental rate constant was lower than that published by Graven and Long, and slightly higher than estimates obtained using the reaction rate expression derived from the Bradford mechanism in conjunction with values of reaction rate constants obtained from the GRI database. Similar experiments conducted using a reactor composed of Inconel® 600, a representative reactor shell material, exhibited substantially enhanced rates of reaction. A simple power‐law rate expression was incorporated into a surface‐catalyzed plug flow reactor (PFR) model to correlate the results between 600 and 900 K. Palladium and palladium–copper alloy surfaces, representative of hydrogen membranes, were also shown to enhance the fWGSR rate, but not as much as the Inconel® 600 surfaces. © 2005 American Institute of Chemical Engineers AIChE J, 2005</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.10396</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2005-05, Vol.51 (5), p.1440-1454 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_743317513 |
source | Access via Wiley Online Library |
subjects | Applied sciences Catalysis Catalytic reactions Chemical engineering Chemistry Exact sciences and technology Gases General and physical chemistry high-temperature homogeneous Inconel kinetics palladium palladium-copper alloys Quartz Reaction kinetics Reactors Surface chemistry Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry Water water-gas shift |
title | Uncatalyzed and wall-catalyzed forward water-gas shift reaction kinetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T02%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncatalyzed%20and%20wall-catalyzed%20forward%20water-gas%20shift%20reaction%20kinetics&rft.jtitle=AIChE%20journal&rft.au=Bustamante,%20F.&rft.date=2005-05&rft.volume=51&rft.issue=5&rft.spage=1440&rft.epage=1454&rft.pages=1440-1454&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.10396&rft_dat=%3Cproquest_cross%3E858405761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199462952&rft_id=info:pmid/&rfr_iscdi=true |