A mathematical model in three-dimensional piezoelectric continuum to predict non-linear responses of piezoceramic materials

Abstract It has been experimentally observed that the piezoceramic materials exhibit different types of non-linearities under different combinations of electrical and mechanical fields. When excited near resonance in the presence of weak electric fields, they exhibit typical non-linearities similar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2008-11, Vol.222 (11), p.2251-2268
Hauptverfasser: Samal, M K, Seshu, P, von Wagner, U, Hagedorn, P, Dutta, B K, Kushwaha, H S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2268
container_issue 11
container_start_page 2251
container_title Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science
container_volume 222
creator Samal, M K
Seshu, P
von Wagner, U
Hagedorn, P
Dutta, B K
Kushwaha, H S
description Abstract It has been experimentally observed that the piezoceramic materials exhibit different types of non-linearities under different combinations of electrical and mechanical fields. When excited near resonance in the presence of weak electric fields, they exhibit typical non-linearities similar to a Duffing oscillator such as jump phenomena and the presence of superharmonics in the response spectra. In this work, these non-linearities have been modelled for a generalized three-dimensional piezoelectric continuum using higher-order quadratic and cubic terms in the electric enthalpy density function and the virtual work. The identification of the parameters of the model requires a closed form solution for non-linear response of a simplified geometry. A simple proportional damping formulation has been used in the model. Experiments have been conducted on rectangular and cylindrical geometries of piezoceramic PIC 181 at different magnitudes of applied electric fields and results have been compared with those of simulation.
doi_str_mv 10.1243/09544062JMES1002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743311769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1243_09544062JMES1002</sage_id><sourcerecordid>743311769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-cf86579195cd1ea5f94e9fc325eb25e44ebf80dd1f824a90c60e71f702b716523</originalsourceid><addsrcrecordid>eNp9kUtP3TAQha0KpF6g-y4tkNpVwONHEi8RojxExaLtOvJ1xsUosVM7WQB_Hke3iwqJWhrP4nznjDRDyGdgp8ClOGNaSclqfvv98gcwxj-QDWcSKq5bsUc2q1yt-kdykPMjK4_XakNezulo5gcsn7dmoGPscaA-0PkhIVa9HzFkH0ORJo_PEQe0c_KW2hhmH5ZlpHOkU8Le25mGGKrBBzSJJsxTDBkzjW5ntZjMWJxlFCZvhnxE9l1p-OlvPyS_vl3-vLiu7u6vbi7O7yortJ4r69paNRq0sj2gUU5L1M4KrnBbSkrcupb1PbiWS6OZrRk24BrGtw3UiotD8nWXO6X4Z8E8d6PPFofBBIxL7hopBEBT60J--S8plJZ1DVDA4zfgY1xS2VLuuJCataDWtJP3INDAhBKSrVFsR9kUc07ouin50aSnDli3nrZ7e9piqXaWbH7jP6Hv8a9y4qTq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>234908159</pqid></control><display><type>article</type><title>A mathematical model in three-dimensional piezoelectric continuum to predict non-linear responses of piezoceramic materials</title><source>SAGE Publications</source><creator>Samal, M K ; Seshu, P ; von Wagner, U ; Hagedorn, P ; Dutta, B K ; Kushwaha, H S</creator><creatorcontrib>Samal, M K ; Seshu, P ; von Wagner, U ; Hagedorn, P ; Dutta, B K ; Kushwaha, H S</creatorcontrib><description>Abstract It has been experimentally observed that the piezoceramic materials exhibit different types of non-linearities under different combinations of electrical and mechanical fields. When excited near resonance in the presence of weak electric fields, they exhibit typical non-linearities similar to a Duffing oscillator such as jump phenomena and the presence of superharmonics in the response spectra. In this work, these non-linearities have been modelled for a generalized three-dimensional piezoelectric continuum using higher-order quadratic and cubic terms in the electric enthalpy density function and the virtual work. The identification of the parameters of the model requires a closed form solution for non-linear response of a simplified geometry. A simple proportional damping formulation has been used in the model. Experiments have been conducted on rectangular and cylindrical geometries of piezoceramic PIC 181 at different magnitudes of applied electric fields and results have been compared with those of simulation.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1243/09544062JMES1002</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Ceramics ; Computer simulation ; Damping ; Duffing oscillators ; Electric fields ; Electricity ; Enthalpy ; Exact solutions ; Mathematical models ; Mechanical engineering ; Nonlinear equations ; Nonlinearity ; Parameter identification ; Piezoelectric ceramics ; Piezoelectricity ; Superharmonics ; Three dimensional models</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2008-11, Vol.222 (11), p.2251-2268</ispartof><rights>2008 Institution of Mechanical Engineers</rights><rights>Copyright Professional Engineering Publishing Ltd Nov 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-cf86579195cd1ea5f94e9fc325eb25e44ebf80dd1f824a90c60e71f702b716523</citedby><cites>FETCH-LOGICAL-c399t-cf86579195cd1ea5f94e9fc325eb25e44ebf80dd1f824a90c60e71f702b716523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1243/09544062JMES1002$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1243/09544062JMES1002$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Samal, M K</creatorcontrib><creatorcontrib>Seshu, P</creatorcontrib><creatorcontrib>von Wagner, U</creatorcontrib><creatorcontrib>Hagedorn, P</creatorcontrib><creatorcontrib>Dutta, B K</creatorcontrib><creatorcontrib>Kushwaha, H S</creatorcontrib><title>A mathematical model in three-dimensional piezoelectric continuum to predict non-linear responses of piezoceramic materials</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>Abstract It has been experimentally observed that the piezoceramic materials exhibit different types of non-linearities under different combinations of electrical and mechanical fields. When excited near resonance in the presence of weak electric fields, they exhibit typical non-linearities similar to a Duffing oscillator such as jump phenomena and the presence of superharmonics in the response spectra. In this work, these non-linearities have been modelled for a generalized three-dimensional piezoelectric continuum using higher-order quadratic and cubic terms in the electric enthalpy density function and the virtual work. The identification of the parameters of the model requires a closed form solution for non-linear response of a simplified geometry. A simple proportional damping formulation has been used in the model. Experiments have been conducted on rectangular and cylindrical geometries of piezoceramic PIC 181 at different magnitudes of applied electric fields and results have been compared with those of simulation.</description><subject>Ceramics</subject><subject>Computer simulation</subject><subject>Damping</subject><subject>Duffing oscillators</subject><subject>Electric fields</subject><subject>Electricity</subject><subject>Enthalpy</subject><subject>Exact solutions</subject><subject>Mathematical models</subject><subject>Mechanical engineering</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Parameter identification</subject><subject>Piezoelectric ceramics</subject><subject>Piezoelectricity</subject><subject>Superharmonics</subject><subject>Three dimensional models</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtP3TAQha0KpF6g-y4tkNpVwONHEi8RojxExaLtOvJ1xsUosVM7WQB_Hke3iwqJWhrP4nznjDRDyGdgp8ClOGNaSclqfvv98gcwxj-QDWcSKq5bsUc2q1yt-kdykPMjK4_XakNezulo5gcsn7dmoGPscaA-0PkhIVa9HzFkH0ORJo_PEQe0c_KW2hhmH5ZlpHOkU8Le25mGGKrBBzSJJsxTDBkzjW5ntZjMWJxlFCZvhnxE9l1p-OlvPyS_vl3-vLiu7u6vbi7O7yortJ4r69paNRq0sj2gUU5L1M4KrnBbSkrcupb1PbiWS6OZrRk24BrGtw3UiotD8nWXO6X4Z8E8d6PPFofBBIxL7hopBEBT60J--S8plJZ1DVDA4zfgY1xS2VLuuJCataDWtJP3INDAhBKSrVFsR9kUc07ouin50aSnDli3nrZ7e9piqXaWbH7jP6Hv8a9y4qTq</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Samal, M K</creator><creator>Seshu, P</creator><creator>von Wagner, U</creator><creator>Hagedorn, P</creator><creator>Dutta, B K</creator><creator>Kushwaha, H S</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20081101</creationdate><title>A mathematical model in three-dimensional piezoelectric continuum to predict non-linear responses of piezoceramic materials</title><author>Samal, M K ; Seshu, P ; von Wagner, U ; Hagedorn, P ; Dutta, B K ; Kushwaha, H S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-cf86579195cd1ea5f94e9fc325eb25e44ebf80dd1f824a90c60e71f702b716523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Ceramics</topic><topic>Computer simulation</topic><topic>Damping</topic><topic>Duffing oscillators</topic><topic>Electric fields</topic><topic>Electricity</topic><topic>Enthalpy</topic><topic>Exact solutions</topic><topic>Mathematical models</topic><topic>Mechanical engineering</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Parameter identification</topic><topic>Piezoelectric ceramics</topic><topic>Piezoelectricity</topic><topic>Superharmonics</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samal, M K</creatorcontrib><creatorcontrib>Seshu, P</creatorcontrib><creatorcontrib>von Wagner, U</creatorcontrib><creatorcontrib>Hagedorn, P</creatorcontrib><creatorcontrib>Dutta, B K</creatorcontrib><creatorcontrib>Kushwaha, H S</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samal, M K</au><au>Seshu, P</au><au>von Wagner, U</au><au>Hagedorn, P</au><au>Dutta, B K</au><au>Kushwaha, H S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mathematical model in three-dimensional piezoelectric continuum to predict non-linear responses of piezoceramic materials</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2008-11-01</date><risdate>2008</risdate><volume>222</volume><issue>11</issue><spage>2251</spage><epage>2268</epage><pages>2251-2268</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>Abstract It has been experimentally observed that the piezoceramic materials exhibit different types of non-linearities under different combinations of electrical and mechanical fields. When excited near resonance in the presence of weak electric fields, they exhibit typical non-linearities similar to a Duffing oscillator such as jump phenomena and the presence of superharmonics in the response spectra. In this work, these non-linearities have been modelled for a generalized three-dimensional piezoelectric continuum using higher-order quadratic and cubic terms in the electric enthalpy density function and the virtual work. The identification of the parameters of the model requires a closed form solution for non-linear response of a simplified geometry. A simple proportional damping formulation has been used in the model. Experiments have been conducted on rectangular and cylindrical geometries of piezoceramic PIC 181 at different magnitudes of applied electric fields and results have been compared with those of simulation.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1243/09544062JMES1002</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0954-4062
ispartof Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2008-11, Vol.222 (11), p.2251-2268
issn 0954-4062
2041-2983
language eng
recordid cdi_proquest_miscellaneous_743311769
source SAGE Publications
subjects Ceramics
Computer simulation
Damping
Duffing oscillators
Electric fields
Electricity
Enthalpy
Exact solutions
Mathematical models
Mechanical engineering
Nonlinear equations
Nonlinearity
Parameter identification
Piezoelectric ceramics
Piezoelectricity
Superharmonics
Three dimensional models
title A mathematical model in three-dimensional piezoelectric continuum to predict non-linear responses of piezoceramic materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A38%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mathematical%20model%20in%20three-dimensional%20piezoelectric%20continuum%20to%20predict%20non-linear%20responses%20of%20piezoceramic%20materials&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Samal,%20M%20K&rft.date=2008-11-01&rft.volume=222&rft.issue=11&rft.spage=2251&rft.epage=2268&rft.pages=2251-2268&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1243/09544062JMES1002&rft_dat=%3Cproquest_cross%3E743311769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=234908159&rft_id=info:pmid/&rft_sage_id=10.1243_09544062JMES1002&rfr_iscdi=true