Improved grouping scheme and meshing strategies for the fast multipole method
If the fast multipole method (FMM) is applied in the context of the boundary element method, the efficiency and accuracy of the FMM is significantly influenced by the used hierarchical grouping scheme. Hence, in this paper, a new approach to the grouping scheme is presented to solve numerical exampl...
Gespeichert in:
Veröffentlicht in: | Compel 2003-09, Vol.22 (3), p.495-507 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 507 |
---|---|
container_issue | 3 |
container_start_page | 495 |
container_title | Compel |
container_volume | 22 |
creator | Buchau, André Hafla, Wolfgang Groh, Friedemann Rucker, Wolfgang M. |
description | If the fast multipole method (FMM) is applied in the context of the boundary element method, the efficiency and accuracy of the FMM is significantly influenced by the used hierarchical grouping scheme. Hence, in this paper, a new approach to the grouping scheme is presented to solve numerical examples with problem-oriented meshes and higher order elements accurately and efficiently. Furthermore, with the proposed meshing strategies the efficiency of the FMM can be additionally controlled. |
doi_str_mv | 10.1108/03321640310474895 |
format | Article |
fullrecord | <record><control><sourceid>proquest_istex</sourceid><recordid>TN_cdi_proquest_miscellaneous_743300405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743300405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-165e282f14fed9680d2768fa1960f5ef4ddb02e72ae6d01624182f4c65acc2973</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBmALgcRS-AHcIg5wITD-to-ohVJ1US9FSFwsE493U5JNsB1E_31dFvXQAvXFkv28oxkNIc8pvKEUzFvgnFElgFMQWhgrH5AVAylaqUA9JKvr_7YC-5g8yfkC6rESVuTTyTin6SeGZpOmZe53myZ3Wxyx8bvQjJi3v59K8gU3PeYmTqkpW2yiz6UZl6H08zRglWU7hafkUfRDxmd_7gPy-cP788OP7frs-OTw3brtBGWl9iGRGRapiBisMhCYViZ6ahVEiVGE8A0YauZRBaCKCVq16JT0Xces5gfk1b5u7f3Hgrm4sc8dDoPf4bRkpwXnAAJklS__K7mwVmvF7oXMcKO4gQpf3IIX05J2dVzHwFowUqmK6B51aco5YXRz6kefLh0Fd70wd2dhNdPuM30u-Osm4NN3pzTX0okvzJ0fndo1-0rdcfWv975uK_kh3CTulHZziJXD3_m_O7oCEJGxUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>209908566</pqid></control><display><type>article</type><title>Improved grouping scheme and meshing strategies for the fast multipole method</title><source>Emerald A-Z Current Journals</source><creator>Buchau, André ; Hafla, Wolfgang ; Groh, Friedemann ; Rucker, Wolfgang M.</creator><creatorcontrib>Buchau, André ; Hafla, Wolfgang ; Groh, Friedemann ; Rucker, Wolfgang M.</creatorcontrib><description>If the fast multipole method (FMM) is applied in the context of the boundary element method, the efficiency and accuracy of the FMM is significantly influenced by the used hierarchical grouping scheme. Hence, in this paper, a new approach to the grouping scheme is presented to solve numerical examples with problem-oriented meshes and higher order elements accurately and efficiently. Furthermore, with the proposed meshing strategies the efficiency of the FMM can be additionally controlled.</description><identifier>ISSN: 0332-1649</identifier><identifier>EISSN: 2054-5606</identifier><identifier>DOI: 10.1108/03321640310474895</identifier><identifier>CODEN: CODUDU</identifier><language>eng</language><publisher>Bradford: MCB UP Ltd</publisher><subject>Accuracy ; Boundary element method ; Efficiency ; Finite element analysis ; Laplace transform ; Laplace transforms ; Mathematical models ; Spheres ; Studies</subject><ispartof>Compel, 2003-09, Vol.22 (3), p.495-507</ispartof><rights>MCB UP Limited</rights><rights>Copyright MCB UP Limited (MCB) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-165e282f14fed9680d2768fa1960f5ef4ddb02e72ae6d01624182f4c65acc2973</citedby><cites>FETCH-LOGICAL-c412t-165e282f14fed9680d2768fa1960f5ef4ddb02e72ae6d01624182f4c65acc2973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/03321640310474895/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/03321640310474895/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,967,11635,27924,27925,52686,52689</link.rule.ids></links><search><creatorcontrib>Buchau, André</creatorcontrib><creatorcontrib>Hafla, Wolfgang</creatorcontrib><creatorcontrib>Groh, Friedemann</creatorcontrib><creatorcontrib>Rucker, Wolfgang M.</creatorcontrib><title>Improved grouping scheme and meshing strategies for the fast multipole method</title><title>Compel</title><description>If the fast multipole method (FMM) is applied in the context of the boundary element method, the efficiency and accuracy of the FMM is significantly influenced by the used hierarchical grouping scheme. Hence, in this paper, a new approach to the grouping scheme is presented to solve numerical examples with problem-oriented meshes and higher order elements accurately and efficiently. Furthermore, with the proposed meshing strategies the efficiency of the FMM can be additionally controlled.</description><subject>Accuracy</subject><subject>Boundary element method</subject><subject>Efficiency</subject><subject>Finite element analysis</subject><subject>Laplace transform</subject><subject>Laplace transforms</subject><subject>Mathematical models</subject><subject>Spheres</subject><subject>Studies</subject><issn>0332-1649</issn><issn>2054-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0U1v1DAQBmALgcRS-AHcIg5wITD-to-ohVJ1US9FSFwsE493U5JNsB1E_31dFvXQAvXFkv28oxkNIc8pvKEUzFvgnFElgFMQWhgrH5AVAylaqUA9JKvr_7YC-5g8yfkC6rESVuTTyTin6SeGZpOmZe53myZ3Wxyx8bvQjJi3v59K8gU3PeYmTqkpW2yiz6UZl6H08zRglWU7hafkUfRDxmd_7gPy-cP788OP7frs-OTw3brtBGWl9iGRGRapiBisMhCYViZ6ahVEiVGE8A0YauZRBaCKCVq16JT0Xces5gfk1b5u7f3Hgrm4sc8dDoPf4bRkpwXnAAJklS__K7mwVmvF7oXMcKO4gQpf3IIX05J2dVzHwFowUqmK6B51aco5YXRz6kefLh0Fd70wd2dhNdPuM30u-Osm4NN3pzTX0okvzJ0fndo1-0rdcfWv975uK_kh3CTulHZziJXD3_m_O7oCEJGxUQ</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Buchau, André</creator><creator>Hafla, Wolfgang</creator><creator>Groh, Friedemann</creator><creator>Rucker, Wolfgang M.</creator><general>MCB UP Ltd</general><general>Emerald Group Publishing Limited</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20030901</creationdate><title>Improved grouping scheme and meshing strategies for the fast multipole method</title><author>Buchau, André ; Hafla, Wolfgang ; Groh, Friedemann ; Rucker, Wolfgang M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-165e282f14fed9680d2768fa1960f5ef4ddb02e72ae6d01624182f4c65acc2973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Accuracy</topic><topic>Boundary element method</topic><topic>Efficiency</topic><topic>Finite element analysis</topic><topic>Laplace transform</topic><topic>Laplace transforms</topic><topic>Mathematical models</topic><topic>Spheres</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buchau, André</creatorcontrib><creatorcontrib>Hafla, Wolfgang</creatorcontrib><creatorcontrib>Groh, Friedemann</creatorcontrib><creatorcontrib>Rucker, Wolfgang M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Compel</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buchau, André</au><au>Hafla, Wolfgang</au><au>Groh, Friedemann</au><au>Rucker, Wolfgang M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved grouping scheme and meshing strategies for the fast multipole method</atitle><jtitle>Compel</jtitle><date>2003-09-01</date><risdate>2003</risdate><volume>22</volume><issue>3</issue><spage>495</spage><epage>507</epage><pages>495-507</pages><issn>0332-1649</issn><eissn>2054-5606</eissn><coden>CODUDU</coden><abstract>If the fast multipole method (FMM) is applied in the context of the boundary element method, the efficiency and accuracy of the FMM is significantly influenced by the used hierarchical grouping scheme. Hence, in this paper, a new approach to the grouping scheme is presented to solve numerical examples with problem-oriented meshes and higher order elements accurately and efficiently. Furthermore, with the proposed meshing strategies the efficiency of the FMM can be additionally controlled.</abstract><cop>Bradford</cop><pub>MCB UP Ltd</pub><doi>10.1108/03321640310474895</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0332-1649 |
ispartof | Compel, 2003-09, Vol.22 (3), p.495-507 |
issn | 0332-1649 2054-5606 |
language | eng |
recordid | cdi_proquest_miscellaneous_743300405 |
source | Emerald A-Z Current Journals |
subjects | Accuracy Boundary element method Efficiency Finite element analysis Laplace transform Laplace transforms Mathematical models Spheres Studies |
title | Improved grouping scheme and meshing strategies for the fast multipole method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20grouping%20scheme%20and%20meshing%20strategies%20for%20the%20fast%20multipole%20method&rft.jtitle=Compel&rft.au=Buchau,%20Andr%C3%A9&rft.date=2003-09-01&rft.volume=22&rft.issue=3&rft.spage=495&rft.epage=507&rft.pages=495-507&rft.issn=0332-1649&rft.eissn=2054-5606&rft.coden=CODUDU&rft_id=info:doi/10.1108/03321640310474895&rft_dat=%3Cproquest_istex%3E743300405%3C/proquest_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=209908566&rft_id=info:pmid/&rfr_iscdi=true |