Improved grouping scheme and meshing strategies for the fast multipole method

If the fast multipole method (FMM) is applied in the context of the boundary element method, the efficiency and accuracy of the FMM is significantly influenced by the used hierarchical grouping scheme. Hence, in this paper, a new approach to the grouping scheme is presented to solve numerical exampl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compel 2003-09, Vol.22 (3), p.495-507
Hauptverfasser: Buchau, André, Hafla, Wolfgang, Groh, Friedemann, Rucker, Wolfgang M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 507
container_issue 3
container_start_page 495
container_title Compel
container_volume 22
creator Buchau, André
Hafla, Wolfgang
Groh, Friedemann
Rucker, Wolfgang M.
description If the fast multipole method (FMM) is applied in the context of the boundary element method, the efficiency and accuracy of the FMM is significantly influenced by the used hierarchical grouping scheme. Hence, in this paper, a new approach to the grouping scheme is presented to solve numerical examples with problem-oriented meshes and higher order elements accurately and efficiently. Furthermore, with the proposed meshing strategies the efficiency of the FMM can be additionally controlled.
doi_str_mv 10.1108/03321640310474895
format Article
fullrecord <record><control><sourceid>proquest_istex</sourceid><recordid>TN_cdi_proquest_miscellaneous_743300405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743300405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-165e282f14fed9680d2768fa1960f5ef4ddb02e72ae6d01624182f4c65acc2973</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBmALgcRS-AHcIg5wITD-to-ohVJ1US9FSFwsE493U5JNsB1E_31dFvXQAvXFkv28oxkNIc8pvKEUzFvgnFElgFMQWhgrH5AVAylaqUA9JKvr_7YC-5g8yfkC6rESVuTTyTin6SeGZpOmZe53myZ3Wxyx8bvQjJi3v59K8gU3PeYmTqkpW2yiz6UZl6H08zRglWU7hafkUfRDxmd_7gPy-cP788OP7frs-OTw3brtBGWl9iGRGRapiBisMhCYViZ6ahVEiVGE8A0YauZRBaCKCVq16JT0Xces5gfk1b5u7f3Hgrm4sc8dDoPf4bRkpwXnAAJklS__K7mwVmvF7oXMcKO4gQpf3IIX05J2dVzHwFowUqmK6B51aco5YXRz6kefLh0Fd70wd2dhNdPuM30u-Osm4NN3pzTX0okvzJ0fndo1-0rdcfWv975uK_kh3CTulHZziJXD3_m_O7oCEJGxUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>209908566</pqid></control><display><type>article</type><title>Improved grouping scheme and meshing strategies for the fast multipole method</title><source>Emerald A-Z Current Journals</source><creator>Buchau, André ; Hafla, Wolfgang ; Groh, Friedemann ; Rucker, Wolfgang M.</creator><creatorcontrib>Buchau, André ; Hafla, Wolfgang ; Groh, Friedemann ; Rucker, Wolfgang M.</creatorcontrib><description>If the fast multipole method (FMM) is applied in the context of the boundary element method, the efficiency and accuracy of the FMM is significantly influenced by the used hierarchical grouping scheme. Hence, in this paper, a new approach to the grouping scheme is presented to solve numerical examples with problem-oriented meshes and higher order elements accurately and efficiently. Furthermore, with the proposed meshing strategies the efficiency of the FMM can be additionally controlled.</description><identifier>ISSN: 0332-1649</identifier><identifier>EISSN: 2054-5606</identifier><identifier>DOI: 10.1108/03321640310474895</identifier><identifier>CODEN: CODUDU</identifier><language>eng</language><publisher>Bradford: MCB UP Ltd</publisher><subject>Accuracy ; Boundary element method ; Efficiency ; Finite element analysis ; Laplace transform ; Laplace transforms ; Mathematical models ; Spheres ; Studies</subject><ispartof>Compel, 2003-09, Vol.22 (3), p.495-507</ispartof><rights>MCB UP Limited</rights><rights>Copyright MCB UP Limited (MCB) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-165e282f14fed9680d2768fa1960f5ef4ddb02e72ae6d01624182f4c65acc2973</citedby><cites>FETCH-LOGICAL-c412t-165e282f14fed9680d2768fa1960f5ef4ddb02e72ae6d01624182f4c65acc2973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/03321640310474895/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/03321640310474895/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,967,11635,27924,27925,52686,52689</link.rule.ids></links><search><creatorcontrib>Buchau, André</creatorcontrib><creatorcontrib>Hafla, Wolfgang</creatorcontrib><creatorcontrib>Groh, Friedemann</creatorcontrib><creatorcontrib>Rucker, Wolfgang M.</creatorcontrib><title>Improved grouping scheme and meshing strategies for the fast multipole method</title><title>Compel</title><description>If the fast multipole method (FMM) is applied in the context of the boundary element method, the efficiency and accuracy of the FMM is significantly influenced by the used hierarchical grouping scheme. Hence, in this paper, a new approach to the grouping scheme is presented to solve numerical examples with problem-oriented meshes and higher order elements accurately and efficiently. Furthermore, with the proposed meshing strategies the efficiency of the FMM can be additionally controlled.</description><subject>Accuracy</subject><subject>Boundary element method</subject><subject>Efficiency</subject><subject>Finite element analysis</subject><subject>Laplace transform</subject><subject>Laplace transforms</subject><subject>Mathematical models</subject><subject>Spheres</subject><subject>Studies</subject><issn>0332-1649</issn><issn>2054-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0U1v1DAQBmALgcRS-AHcIg5wITD-to-ohVJ1US9FSFwsE493U5JNsB1E_31dFvXQAvXFkv28oxkNIc8pvKEUzFvgnFElgFMQWhgrH5AVAylaqUA9JKvr_7YC-5g8yfkC6rESVuTTyTin6SeGZpOmZe53myZ3Wxyx8bvQjJi3v59K8gU3PeYmTqkpW2yiz6UZl6H08zRglWU7hafkUfRDxmd_7gPy-cP788OP7frs-OTw3brtBGWl9iGRGRapiBisMhCYViZ6ahVEiVGE8A0YauZRBaCKCVq16JT0Xces5gfk1b5u7f3Hgrm4sc8dDoPf4bRkpwXnAAJklS__K7mwVmvF7oXMcKO4gQpf3IIX05J2dVzHwFowUqmK6B51aco5YXRz6kefLh0Fd70wd2dhNdPuM30u-Osm4NN3pzTX0okvzJ0fndo1-0rdcfWv975uK_kh3CTulHZziJXD3_m_O7oCEJGxUQ</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Buchau, André</creator><creator>Hafla, Wolfgang</creator><creator>Groh, Friedemann</creator><creator>Rucker, Wolfgang M.</creator><general>MCB UP Ltd</general><general>Emerald Group Publishing Limited</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20030901</creationdate><title>Improved grouping scheme and meshing strategies for the fast multipole method</title><author>Buchau, André ; Hafla, Wolfgang ; Groh, Friedemann ; Rucker, Wolfgang M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-165e282f14fed9680d2768fa1960f5ef4ddb02e72ae6d01624182f4c65acc2973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Accuracy</topic><topic>Boundary element method</topic><topic>Efficiency</topic><topic>Finite element analysis</topic><topic>Laplace transform</topic><topic>Laplace transforms</topic><topic>Mathematical models</topic><topic>Spheres</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buchau, André</creatorcontrib><creatorcontrib>Hafla, Wolfgang</creatorcontrib><creatorcontrib>Groh, Friedemann</creatorcontrib><creatorcontrib>Rucker, Wolfgang M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Compel</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buchau, André</au><au>Hafla, Wolfgang</au><au>Groh, Friedemann</au><au>Rucker, Wolfgang M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved grouping scheme and meshing strategies for the fast multipole method</atitle><jtitle>Compel</jtitle><date>2003-09-01</date><risdate>2003</risdate><volume>22</volume><issue>3</issue><spage>495</spage><epage>507</epage><pages>495-507</pages><issn>0332-1649</issn><eissn>2054-5606</eissn><coden>CODUDU</coden><abstract>If the fast multipole method (FMM) is applied in the context of the boundary element method, the efficiency and accuracy of the FMM is significantly influenced by the used hierarchical grouping scheme. Hence, in this paper, a new approach to the grouping scheme is presented to solve numerical examples with problem-oriented meshes and higher order elements accurately and efficiently. Furthermore, with the proposed meshing strategies the efficiency of the FMM can be additionally controlled.</abstract><cop>Bradford</cop><pub>MCB UP Ltd</pub><doi>10.1108/03321640310474895</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0332-1649
ispartof Compel, 2003-09, Vol.22 (3), p.495-507
issn 0332-1649
2054-5606
language eng
recordid cdi_proquest_miscellaneous_743300405
source Emerald A-Z Current Journals
subjects Accuracy
Boundary element method
Efficiency
Finite element analysis
Laplace transform
Laplace transforms
Mathematical models
Spheres
Studies
title Improved grouping scheme and meshing strategies for the fast multipole method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20grouping%20scheme%20and%20meshing%20strategies%20for%20the%20fast%20multipole%20method&rft.jtitle=Compel&rft.au=Buchau,%20Andr%C3%A9&rft.date=2003-09-01&rft.volume=22&rft.issue=3&rft.spage=495&rft.epage=507&rft.pages=495-507&rft.issn=0332-1649&rft.eissn=2054-5606&rft.coden=CODUDU&rft_id=info:doi/10.1108/03321640310474895&rft_dat=%3Cproquest_istex%3E743300405%3C/proquest_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=209908566&rft_id=info:pmid/&rfr_iscdi=true