Improving the stability of cryogenic current comparator setups

We have realized an improved resistance calibration setup based on a cryogenic current comparator (CCC). The comparator, with 18 windings and 4647 turns in total, is well-suited for all the necessary comparisons with a 100 Omega standard resistor with the quantum Hall effect and inside the range of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Superconductor science & technology 2009-11, Vol.22 (11), p.114004-114004 (8)
Hauptverfasser: Drung, D, Götz, M, Pesel, E, Storm, J-H, Aßmann, C, Peters, M, Schurig, Th
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114004 (8)
container_issue 11
container_start_page 114004
container_title Superconductor science & technology
container_volume 22
creator Drung, D
Götz, M
Pesel, E
Storm, J-H
Aßmann, C
Peters, M
Schurig, Th
description We have realized an improved resistance calibration setup based on a cryogenic current comparator (CCC). The comparator, with 18 windings and 4647 turns in total, is well-suited for all the necessary comparisons with a 100 Omega standard resistor with the quantum Hall effect and inside the range of standard resistance values from 1 Omega to 1 MOmega. The new state-of-the-art setup is equipped with a low-noise dc SQUID (superconducting quantum interference device) and a digital double current source. Proper damping of the CCC resonance, careful electronics design ('box-in-box') and application of internal wideband feedback to the SQUID sensor improve the dynamic stability considerably and lower the overall measurement time as compared against our previous setup.
doi_str_mv 10.1088/0953-2048/22/11/114004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743297606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743297606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-5afd5c6f716cb51072a563f00b8760c2e7665f8b8ae08e20e07ede17c33bf4ef3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BenNU91J0qbZiyCLHwsLXvQc0uxkrbRNTVKh_96Wyl4UhIG5PO87w0PINYVbClKuYJ3zlEEmV4ytKB0nA8hOyIJyQVMhhDwliyN0Ti5C-ACgVHK2IHfbpvPuq2oPSXzHJERdVnUVh8TZxPjBHbCtTGJ677GNiXFNp72OzicBY9-FS3JmdR3w6mcvydvjw-vmOd29PG0397vUZJzHNNd2nxthCypMmVMomM4FtwClLAQYhoUQuZWl1AgSGSAUuEdaGM5Lm6HlS3Iz947PfvYYomqqYLCudYuuD6rIOFuPVWIkxUwa70LwaFXnq0b7QVFQky81qVCTCsWYolTNvsZgOgcr1x0zf7Oq208v0d_8Pze-ATPWemA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743297606</pqid></control><display><type>article</type><title>Improving the stability of cryogenic current comparator setups</title><source>Institute of Physics Journals</source><creator>Drung, D ; Götz, M ; Pesel, E ; Storm, J-H ; Aßmann, C ; Peters, M ; Schurig, Th</creator><creatorcontrib>Drung, D ; Götz, M ; Pesel, E ; Storm, J-H ; Aßmann, C ; Peters, M ; Schurig, Th</creatorcontrib><description>We have realized an improved resistance calibration setup based on a cryogenic current comparator (CCC). The comparator, with 18 windings and 4647 turns in total, is well-suited for all the necessary comparisons with a 100 Omega standard resistor with the quantum Hall effect and inside the range of standard resistance values from 1 Omega to 1 MOmega. The new state-of-the-art setup is equipped with a low-noise dc SQUID (superconducting quantum interference device) and a digital double current source. Proper damping of the CCC resonance, careful electronics design ('box-in-box') and application of internal wideband feedback to the SQUID sensor improve the dynamic stability considerably and lower the overall measurement time as compared against our previous setup.</description><identifier>ISSN: 0953-2048</identifier><identifier>EISSN: 1361-6668</identifier><identifier>DOI: 10.1088/0953-2048/22/11/114004</identifier><language>eng</language><publisher>IOP Publishing</publisher><ispartof>Superconductor science &amp; technology, 2009-11, Vol.22 (11), p.114004-114004 (8)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-5afd5c6f716cb51072a563f00b8760c2e7665f8b8ae08e20e07ede17c33bf4ef3</citedby><cites>FETCH-LOGICAL-c433t-5afd5c6f716cb51072a563f00b8760c2e7665f8b8ae08e20e07ede17c33bf4ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-2048/22/11/114004/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53830,53910</link.rule.ids></links><search><creatorcontrib>Drung, D</creatorcontrib><creatorcontrib>Götz, M</creatorcontrib><creatorcontrib>Pesel, E</creatorcontrib><creatorcontrib>Storm, J-H</creatorcontrib><creatorcontrib>Aßmann, C</creatorcontrib><creatorcontrib>Peters, M</creatorcontrib><creatorcontrib>Schurig, Th</creatorcontrib><title>Improving the stability of cryogenic current comparator setups</title><title>Superconductor science &amp; technology</title><description>We have realized an improved resistance calibration setup based on a cryogenic current comparator (CCC). The comparator, with 18 windings and 4647 turns in total, is well-suited for all the necessary comparisons with a 100 Omega standard resistor with the quantum Hall effect and inside the range of standard resistance values from 1 Omega to 1 MOmega. The new state-of-the-art setup is equipped with a low-noise dc SQUID (superconducting quantum interference device) and a digital double current source. Proper damping of the CCC resonance, careful electronics design ('box-in-box') and application of internal wideband feedback to the SQUID sensor improve the dynamic stability considerably and lower the overall measurement time as compared against our previous setup.</description><issn>0953-2048</issn><issn>1361-6668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BenNU91J0qbZiyCLHwsLXvQc0uxkrbRNTVKh_96Wyl4UhIG5PO87w0PINYVbClKuYJ3zlEEmV4ytKB0nA8hOyIJyQVMhhDwliyN0Ti5C-ACgVHK2IHfbpvPuq2oPSXzHJERdVnUVh8TZxPjBHbCtTGJ677GNiXFNp72OzicBY9-FS3JmdR3w6mcvydvjw-vmOd29PG0397vUZJzHNNd2nxthCypMmVMomM4FtwClLAQYhoUQuZWl1AgSGSAUuEdaGM5Lm6HlS3Iz947PfvYYomqqYLCudYuuD6rIOFuPVWIkxUwa70LwaFXnq0b7QVFQky81qVCTCsWYolTNvsZgOgcr1x0zf7Oq208v0d_8Pze-ATPWemA</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Drung, D</creator><creator>Götz, M</creator><creator>Pesel, E</creator><creator>Storm, J-H</creator><creator>Aßmann, C</creator><creator>Peters, M</creator><creator>Schurig, Th</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20091101</creationdate><title>Improving the stability of cryogenic current comparator setups</title><author>Drung, D ; Götz, M ; Pesel, E ; Storm, J-H ; Aßmann, C ; Peters, M ; Schurig, Th</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-5afd5c6f716cb51072a563f00b8760c2e7665f8b8ae08e20e07ede17c33bf4ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drung, D</creatorcontrib><creatorcontrib>Götz, M</creatorcontrib><creatorcontrib>Pesel, E</creatorcontrib><creatorcontrib>Storm, J-H</creatorcontrib><creatorcontrib>Aßmann, C</creatorcontrib><creatorcontrib>Peters, M</creatorcontrib><creatorcontrib>Schurig, Th</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Superconductor science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drung, D</au><au>Götz, M</au><au>Pesel, E</au><au>Storm, J-H</au><au>Aßmann, C</au><au>Peters, M</au><au>Schurig, Th</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the stability of cryogenic current comparator setups</atitle><jtitle>Superconductor science &amp; technology</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>22</volume><issue>11</issue><spage>114004</spage><epage>114004 (8)</epage><pages>114004-114004 (8)</pages><issn>0953-2048</issn><eissn>1361-6668</eissn><abstract>We have realized an improved resistance calibration setup based on a cryogenic current comparator (CCC). The comparator, with 18 windings and 4647 turns in total, is well-suited for all the necessary comparisons with a 100 Omega standard resistor with the quantum Hall effect and inside the range of standard resistance values from 1 Omega to 1 MOmega. The new state-of-the-art setup is equipped with a low-noise dc SQUID (superconducting quantum interference device) and a digital double current source. Proper damping of the CCC resonance, careful electronics design ('box-in-box') and application of internal wideband feedback to the SQUID sensor improve the dynamic stability considerably and lower the overall measurement time as compared against our previous setup.</abstract><pub>IOP Publishing</pub><doi>10.1088/0953-2048/22/11/114004</doi></addata></record>
fulltext fulltext
identifier ISSN: 0953-2048
ispartof Superconductor science & technology, 2009-11, Vol.22 (11), p.114004-114004 (8)
issn 0953-2048
1361-6668
language eng
recordid cdi_proquest_miscellaneous_743297606
source Institute of Physics Journals
title Improving the stability of cryogenic current comparator setups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20stability%20of%20cryogenic%20current%20comparator%20setups&rft.jtitle=Superconductor%20science%20&%20technology&rft.au=Drung,%20D&rft.date=2009-11-01&rft.volume=22&rft.issue=11&rft.spage=114004&rft.epage=114004%20(8)&rft.pages=114004-114004%20(8)&rft.issn=0953-2048&rft.eissn=1361-6668&rft_id=info:doi/10.1088/0953-2048/22/11/114004&rft_dat=%3Cproquest_cross%3E743297606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743297606&rft_id=info:pmid/&rfr_iscdi=true