Mimicking celestial mechanics in metamaterials

Einstein’s general theory of relativity establishes equality between matter–energy density and the curvature of spacetime. As a result, light and matter follow natural paths in the inherent spacetime and may experience bending and trapping in a specific region of space. So far, the interaction of li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2009-09, Vol.5 (9), p.687-692
Hauptverfasser: Zhang, Xiang, Genov, Dentcho A, Zhang, Shuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 692
container_issue 9
container_start_page 687
container_title Nature physics
container_volume 5
creator Zhang, Xiang
Genov, Dentcho A
Zhang, Shuang
description Einstein’s general theory of relativity establishes equality between matter–energy density and the curvature of spacetime. As a result, light and matter follow natural paths in the inherent spacetime and may experience bending and trapping in a specific region of space. So far, the interaction of light and matter with curved spacetime has been predominantly studied theoretically and through astronomical observations. Here, we propose to link the newly emerged field of artificial optical materials to that of celestial mechanics, thus opening the way to investigate light phenomena reminiscent of orbital motion, strange attractors and chaos, in a controlled laboratory environment. The optical–mechanical analogy enables direct studies of critical light/matter behaviour around massive celestial bodies and, on the other hand, points towards the design of novel optical cavities and photon traps for application in microscopic devices and lasers systems. Black holes are difficult to study experimentally, owing to their distance from us and indeed their very nature. A theoretical study suggests that optical metamaterials that exhibit behaviour that is reminiscent of that of black holes, could enable us to learn more about these and other astrophysical objects.
doi_str_mv 10.1038/nphys1338
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743292686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1858646791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-218398ff76544cad63d4d6264bb757477b76bc3b05279ff76ac57818f1803d213</originalsourceid><addsrcrecordid>eNpt0E1LwzAYB_AgCs7pwU_g8CIKnXlPepThG0y86DmkabplrulM2sO-vSmVKuLpSXh-_PnzAHCO4BxBIm_9br2PiBB5ACZIUJZhKtHh-BbkGJzEuIGQYo7IBMxfXO3Mh_OrmbFbG1unt7PamrX2zsSZ8-nT6lq3NqRNPAVHVRr27HtOwfvD_dviKVu-Pj4v7paZoYi0GUaS5LKqBGeUGl1yUtKSY06LQjBBhSgELwwpIMMi75k2TEgkKyQhKTEiU3A15O5C89mlWqp2MRXcam-bLipBCc4xlzzJyz9y03TBp3IK5ZSznME-7npAJjQxBlupXXC1DnuFoOrvpsa7JXsz2JiMX9nwK_AffDFgr9su2DH2R3wB1tp4wQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194659501</pqid></control><display><type>article</type><title>Mimicking celestial mechanics in metamaterials</title><source>SpringerLink Journals</source><source>Nature</source><creator>Zhang, Xiang ; Genov, Dentcho A ; Zhang, Shuang</creator><creatorcontrib>Zhang, Xiang ; Genov, Dentcho A ; Zhang, Shuang</creatorcontrib><description>Einstein’s general theory of relativity establishes equality between matter–energy density and the curvature of spacetime. As a result, light and matter follow natural paths in the inherent spacetime and may experience bending and trapping in a specific region of space. So far, the interaction of light and matter with curved spacetime has been predominantly studied theoretically and through astronomical observations. Here, we propose to link the newly emerged field of artificial optical materials to that of celestial mechanics, thus opening the way to investigate light phenomena reminiscent of orbital motion, strange attractors and chaos, in a controlled laboratory environment. The optical–mechanical analogy enables direct studies of critical light/matter behaviour around massive celestial bodies and, on the other hand, points towards the design of novel optical cavities and photon traps for application in microscopic devices and lasers systems. Black holes are difficult to study experimentally, owing to their distance from us and indeed their very nature. A theoretical study suggests that optical metamaterials that exhibit behaviour that is reminiscent of that of black holes, could enable us to learn more about these and other astrophysical objects.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys1338</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Astrophysics ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Lasers ; Light ; Materials science ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Optics ; Physics ; Physics and Astronomy ; Theoretical ; Trapping</subject><ispartof>Nature physics, 2009-09, Vol.5 (9), p.687-692</ispartof><rights>Springer Nature Limited 2009</rights><rights>Copyright Nature Publishing Group Sep 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-218398ff76544cad63d4d6264bb757477b76bc3b05279ff76ac57818f1803d213</citedby><cites>FETCH-LOGICAL-c413t-218398ff76544cad63d4d6264bb757477b76bc3b05279ff76ac57818f1803d213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys1338$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys1338$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Genov, Dentcho A</creatorcontrib><creatorcontrib>Zhang, Shuang</creatorcontrib><title>Mimicking celestial mechanics in metamaterials</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Einstein’s general theory of relativity establishes equality between matter–energy density and the curvature of spacetime. As a result, light and matter follow natural paths in the inherent spacetime and may experience bending and trapping in a specific region of space. So far, the interaction of light and matter with curved spacetime has been predominantly studied theoretically and through astronomical observations. Here, we propose to link the newly emerged field of artificial optical materials to that of celestial mechanics, thus opening the way to investigate light phenomena reminiscent of orbital motion, strange attractors and chaos, in a controlled laboratory environment. The optical–mechanical analogy enables direct studies of critical light/matter behaviour around massive celestial bodies and, on the other hand, points towards the design of novel optical cavities and photon traps for application in microscopic devices and lasers systems. Black holes are difficult to study experimentally, owing to their distance from us and indeed their very nature. A theoretical study suggests that optical metamaterials that exhibit behaviour that is reminiscent of that of black holes, could enable us to learn more about these and other astrophysical objects.</description><subject>Astrophysics</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Lasers</subject><subject>Light</subject><subject>Materials science</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><subject>Trapping</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpt0E1LwzAYB_AgCs7pwU_g8CIKnXlPepThG0y86DmkabplrulM2sO-vSmVKuLpSXh-_PnzAHCO4BxBIm_9br2PiBB5ACZIUJZhKtHh-BbkGJzEuIGQYo7IBMxfXO3Mh_OrmbFbG1unt7PamrX2zsSZ8-nT6lq3NqRNPAVHVRr27HtOwfvD_dviKVu-Pj4v7paZoYi0GUaS5LKqBGeUGl1yUtKSY06LQjBBhSgELwwpIMMi75k2TEgkKyQhKTEiU3A15O5C89mlWqp2MRXcam-bLipBCc4xlzzJyz9y03TBp3IK5ZSznME-7npAJjQxBlupXXC1DnuFoOrvpsa7JXsz2JiMX9nwK_AffDFgr9su2DH2R3wB1tp4wQ</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Zhang, Xiang</creator><creator>Genov, Dentcho A</creator><creator>Zhang, Shuang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20090901</creationdate><title>Mimicking celestial mechanics in metamaterials</title><author>Zhang, Xiang ; Genov, Dentcho A ; Zhang, Shuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-218398ff76544cad63d4d6264bb757477b76bc3b05279ff76ac57818f1803d213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Astrophysics</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Lasers</topic><topic>Light</topic><topic>Materials science</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Genov, Dentcho A</creatorcontrib><creatorcontrib>Zhang, Shuang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiang</au><au>Genov, Dentcho A</au><au>Zhang, Shuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mimicking celestial mechanics in metamaterials</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2009-09-01</date><risdate>2009</risdate><volume>5</volume><issue>9</issue><spage>687</spage><epage>692</epage><pages>687-692</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Einstein’s general theory of relativity establishes equality between matter–energy density and the curvature of spacetime. As a result, light and matter follow natural paths in the inherent spacetime and may experience bending and trapping in a specific region of space. So far, the interaction of light and matter with curved spacetime has been predominantly studied theoretically and through astronomical observations. Here, we propose to link the newly emerged field of artificial optical materials to that of celestial mechanics, thus opening the way to investigate light phenomena reminiscent of orbital motion, strange attractors and chaos, in a controlled laboratory environment. The optical–mechanical analogy enables direct studies of critical light/matter behaviour around massive celestial bodies and, on the other hand, points towards the design of novel optical cavities and photon traps for application in microscopic devices and lasers systems. Black holes are difficult to study experimentally, owing to their distance from us and indeed their very nature. A theoretical study suggests that optical metamaterials that exhibit behaviour that is reminiscent of that of black holes, could enable us to learn more about these and other astrophysical objects.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys1338</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2009-09, Vol.5 (9), p.687-692
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_miscellaneous_743292686
source SpringerLink Journals; Nature
subjects Astrophysics
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Lasers
Light
Materials science
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Optics
Physics
Physics and Astronomy
Theoretical
Trapping
title Mimicking celestial mechanics in metamaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mimicking%20celestial%20mechanics%20in%20metamaterials&rft.jtitle=Nature%20physics&rft.au=Zhang,%20Xiang&rft.date=2009-09-01&rft.volume=5&rft.issue=9&rft.spage=687&rft.epage=692&rft.pages=687-692&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys1338&rft_dat=%3Cproquest_cross%3E1858646791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194659501&rft_id=info:pmid/&rfr_iscdi=true