Multiobjective optimization strategies for linear gradient chromatography

The increase in the scale of preparative chromatographic processes for biopharmaceutical applications now necessitates the development of effective optimization strategies for large‐scale processes in a manufacturing setting. The current state of the art for optimization of preparative chromatograph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2005-02, Vol.51 (2), p.511-525
Hauptverfasser: Nagrath, Deepak, Bequette, B. Wayne, Cramer, S. M., Messac, Achille
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 525
container_issue 2
container_start_page 511
container_title AIChE journal
container_volume 51
creator Nagrath, Deepak
Bequette, B. Wayne
Cramer, S. M.
Messac, Achille
description The increase in the scale of preparative chromatographic processes for biopharmaceutical applications now necessitates the development of effective optimization strategies for large‐scale processes in a manufacturing setting. The current state of the art for optimization of preparative chromatography has been limited to single objective functions. Further, there is a lack of understanding of when to use a particular objective, and how to combine and/or prioritize mutually competing objectives to achieve a true optimal solution. In this paper, these limitations are addressed by using a physical programming–based multiobjective optimization (MO) strategy. A set of Pareto solutions are first generated for model protein separations for both bi‐objective (production rate and yield) and tri‐objective (production rate, yield, and product pool concentration) scenarios. These Pareto frontiers are used to visualize the Pareto optimal surface for different components with various purity constraints and provide a qualitative framework to evaluate the optimal solutions. A physical programming–based multiobjective framework is then used for the quantitative evaluation of the optimal solutions for tertiary protein mixtures. This enables the interpretation of results for different sets of hierarchy and priority values assigned to the objective functions and constraints for the chromatographic processes. This novel multiobjective optimization approach computes the trade‐offs between the conflicting design objectives and helps in choosing an operating condition from infinite feasible optimal solutions. The combined quantitative and visualization framework presented in this paper sets the stage for the development of true optimal solutions for complex nonlinear preparative separations. © 2005 American Institute of Chemical Engineers AIChE J, 51: 511–525, 2005
doi_str_mv 10.1002/aic.10459
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743289411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>856710181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4339-64ae5bb603aaf8a45a6c73aaf20420f966341de0c3a9b911da99f21510559db53</originalsourceid><addsrcrecordid>eNp1kF-LEzEUxYMoWKsPfoNBEPFhbDL5M5PHUta2bFUURd_CnUymTZ2ZdJN0d-unN3WqguDTvffwO4fLQeg5wW8IxsUMrE4L4_IBmhDOypxLzB-iCcaY5Ekgj9GTEPbpKsqqmKD1u2MXrav3Rkd7azJ3iLa3PyBpQxaih2i21oSsdT7r7GDAZ1sPjTVDzPTOux6iS8Jhd3qKHrXQBfPsMqfoy9urz4tVvvmwXC_mm1wzSmUuGBhe1wJTgLYCxkHo8rwXmBW4lUJQRhqDNQVZS0IakLItCCeYc9nUnE7RqzH34N3N0YSoehu06ToYjDsGVTJaVJIRksgX_5B7d_RDek4RKanEojrHvR4h7V0I3rTq4G0P_qQIVudKVapU_ao0sS8vgRA0dK2HQdvw1yA4rUZuNnJ3tjOn_weq-XrxOzkfHTZEc__HAf67EiUtufr6fqlWnz5-W4jyWlH6EzKpk_E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199390685</pqid></control><display><type>article</type><title>Multiobjective optimization strategies for linear gradient chromatography</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nagrath, Deepak ; Bequette, B. Wayne ; Cramer, S. M. ; Messac, Achille</creator><creatorcontrib>Nagrath, Deepak ; Bequette, B. Wayne ; Cramer, S. M. ; Messac, Achille</creatorcontrib><description>The increase in the scale of preparative chromatographic processes for biopharmaceutical applications now necessitates the development of effective optimization strategies for large‐scale processes in a manufacturing setting. The current state of the art for optimization of preparative chromatography has been limited to single objective functions. Further, there is a lack of understanding of when to use a particular objective, and how to combine and/or prioritize mutually competing objectives to achieve a true optimal solution. In this paper, these limitations are addressed by using a physical programming–based multiobjective optimization (MO) strategy. A set of Pareto solutions are first generated for model protein separations for both bi‐objective (production rate and yield) and tri‐objective (production rate, yield, and product pool concentration) scenarios. These Pareto frontiers are used to visualize the Pareto optimal surface for different components with various purity constraints and provide a qualitative framework to evaluate the optimal solutions. A physical programming–based multiobjective framework is then used for the quantitative evaluation of the optimal solutions for tertiary protein mixtures. This enables the interpretation of results for different sets of hierarchy and priority values assigned to the objective functions and constraints for the chromatographic processes. This novel multiobjective optimization approach computes the trade‐offs between the conflicting design objectives and helps in choosing an operating condition from infinite feasible optimal solutions. The combined quantitative and visualization framework presented in this paper sets the stage for the development of true optimal solutions for complex nonlinear preparative separations. © 2005 American Institute of Chemical Engineers AIChE J, 51: 511–525, 2005</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.10459</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Chemical engineering ; Chromatography ; Exact sciences and technology ; Manufacturing ; Optimization ; Solutions</subject><ispartof>AIChE journal, 2005-02, Vol.51 (2), p.511-525</ispartof><rights>Copyright © 2005 American Institute of Chemical Engineers (AIChE)</rights><rights>2005 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Feb 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4339-64ae5bb603aaf8a45a6c73aaf20420f966341de0c3a9b911da99f21510559db53</citedby><cites>FETCH-LOGICAL-c4339-64ae5bb603aaf8a45a6c73aaf20420f966341de0c3a9b911da99f21510559db53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.10459$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.10459$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16538459$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagrath, Deepak</creatorcontrib><creatorcontrib>Bequette, B. Wayne</creatorcontrib><creatorcontrib>Cramer, S. M.</creatorcontrib><creatorcontrib>Messac, Achille</creatorcontrib><title>Multiobjective optimization strategies for linear gradient chromatography</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>The increase in the scale of preparative chromatographic processes for biopharmaceutical applications now necessitates the development of effective optimization strategies for large‐scale processes in a manufacturing setting. The current state of the art for optimization of preparative chromatography has been limited to single objective functions. Further, there is a lack of understanding of when to use a particular objective, and how to combine and/or prioritize mutually competing objectives to achieve a true optimal solution. In this paper, these limitations are addressed by using a physical programming–based multiobjective optimization (MO) strategy. A set of Pareto solutions are first generated for model protein separations for both bi‐objective (production rate and yield) and tri‐objective (production rate, yield, and product pool concentration) scenarios. These Pareto frontiers are used to visualize the Pareto optimal surface for different components with various purity constraints and provide a qualitative framework to evaluate the optimal solutions. A physical programming–based multiobjective framework is then used for the quantitative evaluation of the optimal solutions for tertiary protein mixtures. This enables the interpretation of results for different sets of hierarchy and priority values assigned to the objective functions and constraints for the chromatographic processes. This novel multiobjective optimization approach computes the trade‐offs between the conflicting design objectives and helps in choosing an operating condition from infinite feasible optimal solutions. The combined quantitative and visualization framework presented in this paper sets the stage for the development of true optimal solutions for complex nonlinear preparative separations. © 2005 American Institute of Chemical Engineers AIChE J, 51: 511–525, 2005</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Chromatography</subject><subject>Exact sciences and technology</subject><subject>Manufacturing</subject><subject>Optimization</subject><subject>Solutions</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kF-LEzEUxYMoWKsPfoNBEPFhbDL5M5PHUta2bFUURd_CnUymTZ2ZdJN0d-unN3WqguDTvffwO4fLQeg5wW8IxsUMrE4L4_IBmhDOypxLzB-iCcaY5Ekgj9GTEPbpKsqqmKD1u2MXrav3Rkd7azJ3iLa3PyBpQxaih2i21oSsdT7r7GDAZ1sPjTVDzPTOux6iS8Jhd3qKHrXQBfPsMqfoy9urz4tVvvmwXC_mm1wzSmUuGBhe1wJTgLYCxkHo8rwXmBW4lUJQRhqDNQVZS0IakLItCCeYc9nUnE7RqzH34N3N0YSoehu06ToYjDsGVTJaVJIRksgX_5B7d_RDek4RKanEojrHvR4h7V0I3rTq4G0P_qQIVudKVapU_ao0sS8vgRA0dK2HQdvw1yA4rUZuNnJ3tjOn_weq-XrxOzkfHTZEc__HAf67EiUtufr6fqlWnz5-W4jyWlH6EzKpk_E</recordid><startdate>200502</startdate><enddate>200502</enddate><creator>Nagrath, Deepak</creator><creator>Bequette, B. Wayne</creator><creator>Cramer, S. M.</creator><creator>Messac, Achille</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>200502</creationdate><title>Multiobjective optimization strategies for linear gradient chromatography</title><author>Nagrath, Deepak ; Bequette, B. Wayne ; Cramer, S. M. ; Messac, Achille</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4339-64ae5bb603aaf8a45a6c73aaf20420f966341de0c3a9b911da99f21510559db53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Chromatography</topic><topic>Exact sciences and technology</topic><topic>Manufacturing</topic><topic>Optimization</topic><topic>Solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagrath, Deepak</creatorcontrib><creatorcontrib>Bequette, B. Wayne</creatorcontrib><creatorcontrib>Cramer, S. M.</creatorcontrib><creatorcontrib>Messac, Achille</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagrath, Deepak</au><au>Bequette, B. Wayne</au><au>Cramer, S. M.</au><au>Messac, Achille</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective optimization strategies for linear gradient chromatography</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2005-02</date><risdate>2005</risdate><volume>51</volume><issue>2</issue><spage>511</spage><epage>525</epage><pages>511-525</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>The increase in the scale of preparative chromatographic processes for biopharmaceutical applications now necessitates the development of effective optimization strategies for large‐scale processes in a manufacturing setting. The current state of the art for optimization of preparative chromatography has been limited to single objective functions. Further, there is a lack of understanding of when to use a particular objective, and how to combine and/or prioritize mutually competing objectives to achieve a true optimal solution. In this paper, these limitations are addressed by using a physical programming–based multiobjective optimization (MO) strategy. A set of Pareto solutions are first generated for model protein separations for both bi‐objective (production rate and yield) and tri‐objective (production rate, yield, and product pool concentration) scenarios. These Pareto frontiers are used to visualize the Pareto optimal surface for different components with various purity constraints and provide a qualitative framework to evaluate the optimal solutions. A physical programming–based multiobjective framework is then used for the quantitative evaluation of the optimal solutions for tertiary protein mixtures. This enables the interpretation of results for different sets of hierarchy and priority values assigned to the objective functions and constraints for the chromatographic processes. This novel multiobjective optimization approach computes the trade‐offs between the conflicting design objectives and helps in choosing an operating condition from infinite feasible optimal solutions. The combined quantitative and visualization framework presented in this paper sets the stage for the development of true optimal solutions for complex nonlinear preparative separations. © 2005 American Institute of Chemical Engineers AIChE J, 51: 511–525, 2005</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.10459</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2005-02, Vol.51 (2), p.511-525
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_743289411
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Chemical engineering
Chromatography
Exact sciences and technology
Manufacturing
Optimization
Solutions
title Multiobjective optimization strategies for linear gradient chromatography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20optimization%20strategies%20for%20linear%20gradient%20chromatography&rft.jtitle=AIChE%20journal&rft.au=Nagrath,%20Deepak&rft.date=2005-02&rft.volume=51&rft.issue=2&rft.spage=511&rft.epage=525&rft.pages=511-525&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.10459&rft_dat=%3Cproquest_cross%3E856710181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199390685&rft_id=info:pmid/&rfr_iscdi=true