Multiobjective wing design using genetic algorithms and fuzzy logic

Abstract The designer frequently faces problems in which the project depends on many parameters and the final solution must be evaluated according to several optimization objectives. This may be the case for the aeroelastic and aeromechanical design of lifting surfaces. The aim of the present paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2004-04, Vol.218 (2), p.133-145
Hauptverfasser: Saggiani, G M, Caligiana, G, Persiani, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 145
container_issue 2
container_start_page 133
container_title Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering
container_volume 218
creator Saggiani, G M
Caligiana, G
Persiani, F
description Abstract The designer frequently faces problems in which the project depends on many parameters and the final solution must be evaluated according to several optimization objectives. This may be the case for the aeroelastic and aeromechanical design of lifting surfaces. The aim of the present paper is to show how the combined techniques of genetic algorithms (GAs) and fuzzy logic can be useful in these situations. The leading idea is the development of a tool to assist the designer in the preliminary phase of activity by assigning a genetic code to every possible solution and assessing its performance by means of a fuzzy controller in order to handle simultaneously different design criteria. Examples are given for some typical problems in aeronautical design.
doi_str_mv 10.1243/0954410041321961
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743288252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1243_0954410041321961</sage_id><sourcerecordid>28253537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-98e1ee6dbb8394a3e89f5916473ac4ed608641185ddc508c3b210695bf9f73993</originalsourceid><addsrcrecordid>eNqNkc1Lw0AQxRdRsFbvHoMHPUV39iu7RylWhYoXPYfNZhK3pEnNJkr715tQQSgozmGGx_zmwfAIOQd6DUzwG2qkEECpAM7AKDggEzaImFMmD8lkXMfj_pichLCkQ0nFJ2T21Fedb7Ilus5_YPTp6zLKMfiyjvowihJr7LyLbFU2re_eViGydR4V_Xa7iaqm9O6UHBW2Cnj2PafkdX73MnuIF8_3j7PbRewEpV1sNAKiyrNMcyMsR20KaUCJhFsnMFdUKwGgZZ47SbXjGQOqjMwKUyTcGD4lVzvfddu89xi6dOWDw6qyNTZ9SBPBmdZMsoG8_JNkOhHCyOQfIJNc8hG82AOXTd_Ww7spAw4ahj5AdAe5tgmhxSJdt35l200KNB1TSvdTGk7i3UmwJf54_sp_ARVwj04</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213181213</pqid></control><display><type>article</type><title>Multiobjective wing design using genetic algorithms and fuzzy logic</title><source>SAGE Complete</source><creator>Saggiani, G M ; Caligiana, G ; Persiani, F</creator><creatorcontrib>Saggiani, G M ; Caligiana, G ; Persiani, F</creatorcontrib><description>Abstract The designer frequently faces problems in which the project depends on many parameters and the final solution must be evaluated according to several optimization objectives. This may be the case for the aeroelastic and aeromechanical design of lifting surfaces. The aim of the present paper is to show how the combined techniques of genetic algorithms (GAs) and fuzzy logic can be useful in these situations. The leading idea is the development of a tool to assist the designer in the preliminary phase of activity by assigning a genetic code to every possible solution and assessing its performance by means of a fuzzy controller in order to handle simultaneously different design criteria. Examples are given for some typical problems in aeronautical design.</description><identifier>ISSN: 0954-4100</identifier><identifier>EISSN: 2041-3025</identifier><identifier>DOI: 10.1243/0954410041321961</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aerodynamics ; Design engineering ; Design optimization ; Fuzzy logic ; Genetic algorithms ; Heuristic ; Optimization algorithms</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2004-04, Vol.218 (2), p.133-145</ispartof><rights>2004 Institution of Mechanical Engineers</rights><rights>Copyright Mechanical Engineering Publications, Ltd. Apr 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-98e1ee6dbb8394a3e89f5916473ac4ed608641185ddc508c3b210695bf9f73993</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1243/0954410041321961$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1243/0954410041321961$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Saggiani, G M</creatorcontrib><creatorcontrib>Caligiana, G</creatorcontrib><creatorcontrib>Persiani, F</creatorcontrib><title>Multiobjective wing design using genetic algorithms and fuzzy logic</title><title>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</title><description>Abstract The designer frequently faces problems in which the project depends on many parameters and the final solution must be evaluated according to several optimization objectives. This may be the case for the aeroelastic and aeromechanical design of lifting surfaces. The aim of the present paper is to show how the combined techniques of genetic algorithms (GAs) and fuzzy logic can be useful in these situations. The leading idea is the development of a tool to assist the designer in the preliminary phase of activity by assigning a genetic code to every possible solution and assessing its performance by means of a fuzzy controller in order to handle simultaneously different design criteria. Examples are given for some typical problems in aeronautical design.</description><subject>Aerodynamics</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Fuzzy logic</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Optimization algorithms</subject><issn>0954-4100</issn><issn>2041-3025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkc1Lw0AQxRdRsFbvHoMHPUV39iu7RylWhYoXPYfNZhK3pEnNJkr715tQQSgozmGGx_zmwfAIOQd6DUzwG2qkEECpAM7AKDggEzaImFMmD8lkXMfj_pichLCkQ0nFJ2T21Fedb7Ilus5_YPTp6zLKMfiyjvowihJr7LyLbFU2re_eViGydR4V_Xa7iaqm9O6UHBW2Cnj2PafkdX73MnuIF8_3j7PbRewEpV1sNAKiyrNMcyMsR20KaUCJhFsnMFdUKwGgZZ47SbXjGQOqjMwKUyTcGD4lVzvfddu89xi6dOWDw6qyNTZ9SBPBmdZMsoG8_JNkOhHCyOQfIJNc8hG82AOXTd_Ww7spAw4ahj5AdAe5tgmhxSJdt35l200KNB1TSvdTGk7i3UmwJf54_sp_ARVwj04</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Saggiani, G M</creator><creator>Caligiana, G</creator><creator>Persiani, F</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SC</scope><scope>7SP</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040401</creationdate><title>Multiobjective wing design using genetic algorithms and fuzzy logic</title><author>Saggiani, G M ; Caligiana, G ; Persiani, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-98e1ee6dbb8394a3e89f5916473ac4ed608641185ddc508c3b210695bf9f73993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Aerodynamics</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Fuzzy logic</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Optimization algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saggiani, G M</creatorcontrib><creatorcontrib>Caligiana, G</creatorcontrib><creatorcontrib>Persiani, F</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saggiani, G M</au><au>Caligiana, G</au><au>Persiani, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective wing design using genetic algorithms and fuzzy logic</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle><date>2004-04-01</date><risdate>2004</risdate><volume>218</volume><issue>2</issue><spage>133</spage><epage>145</epage><pages>133-145</pages><issn>0954-4100</issn><eissn>2041-3025</eissn><abstract>Abstract The designer frequently faces problems in which the project depends on many parameters and the final solution must be evaluated according to several optimization objectives. This may be the case for the aeroelastic and aeromechanical design of lifting surfaces. The aim of the present paper is to show how the combined techniques of genetic algorithms (GAs) and fuzzy logic can be useful in these situations. The leading idea is the development of a tool to assist the designer in the preliminary phase of activity by assigning a genetic code to every possible solution and assessing its performance by means of a fuzzy controller in order to handle simultaneously different design criteria. Examples are given for some typical problems in aeronautical design.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1243/0954410041321961</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0954-4100
ispartof Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2004-04, Vol.218 (2), p.133-145
issn 0954-4100
2041-3025
language eng
recordid cdi_proquest_miscellaneous_743288252
source SAGE Complete
subjects Aerodynamics
Design engineering
Design optimization
Fuzzy logic
Genetic algorithms
Heuristic
Optimization algorithms
title Multiobjective wing design using genetic algorithms and fuzzy logic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20wing%20design%20using%20genetic%20algorithms%20and%20fuzzy%20logic&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20G,%20Journal%20of%20aerospace%20engineering&rft.au=Saggiani,%20G%20M&rft.date=2004-04-01&rft.volume=218&rft.issue=2&rft.spage=133&rft.epage=145&rft.pages=133-145&rft.issn=0954-4100&rft.eissn=2041-3025&rft_id=info:doi/10.1243/0954410041321961&rft_dat=%3Cproquest_cross%3E28253537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213181213&rft_id=info:pmid/&rft_sage_id=10.1243_0954410041321961&rfr_iscdi=true