Microwave and conventional curing of thick-section thermoset composite laminates: Experiment and simulation

In conventional processing, thermal gradients cause differential curing of thick laminates and undesirable outside‐in solidification. To reduce thermal gradients, thick laminates are processed at lower cure temperatures and heated with slow heating rates, resulting in excessive cure times. Microwave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2001-04, Vol.22 (2), p.197-212
Hauptverfasser: Thostenson, Erik T., Chou, Tsu-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 212
container_issue 2
container_start_page 197
container_title Polymer composites
container_volume 22
creator Thostenson, Erik T.
Chou, Tsu-Wei
description In conventional processing, thermal gradients cause differential curing of thick laminates and undesirable outside‐in solidification. To reduce thermal gradients, thick laminates are processed at lower cure temperatures and heated with slow heating rates, resulting in excessive cure times. Microwaves can transmit energy volumetrically and instantaneously through direct interaction of materials with applied electromagnetic fields. The more efficient energy transfer of microwaves can alleviate the problems associated with differential curing, and the preferred inside‐out solidification can be obtained. In this work, both microwave curing and thermal curing of 24.5 mm (1 inch) thick‐section glass/epoxy laminates are investigated through the development of a numerical process simulation and conducting experiments in processing thick laminates in a conventional autoclave and a microwave furnace. Outside‐in curing of the autoclave‐processed laminate resulted in visible matrix cracks, while cracks were not visible in the microwave‐processed laminate. Both numerical and experimental results show that volumetric heating due to microwaves promotes an inside‐out cure and can dramatically reduce the overall processing time.
doi_str_mv 10.1002/pc.10531
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743285823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26781646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4531-2becf0bd086f7446985044b585d2dfd6494ec301d6be940566470e438349bfde3</originalsourceid><addsrcrecordid>eNp90ctu1DAUBmALgcRQkHiECCTaTcCO7-zoqBfU4TISiKXlOCfgThIHO-nl7fF0pl0gwcqy_Pk_9jkIvST4LcG4eje6vHJKHqEF4UyVmAv9GC1wJatSUS2fomcpXWZJhKALtPnkXQzX9goKOzSFC8MVDJMPg-0KN0c__CxCW0y_vNuUCdz2JO8g9iHBlHk_huQnKDrb-8FOkN4XJzcjRN_nmLvI5Pu5s9uLz9GT1nYJXuzXA_T99OTb8rxcfTn7uPywKh3LDy-rGlyL6wYr0UrGhFYcM1ZzxZuqaRvBNANHMWlEDZrl_wkmMTCqKNN12wA9QIe73DGG3zOkyfQ-Oeg6O0CYk5GMVoqrimb55r-yElIRwUSGr_6Cl2GOuUnJEK1JrsxwRkc7lDuaUoTWjLkPNt4ags12OGZ05m44mb7e59nkbNdGOzifHrzmVMpt1XKnrn0Ht_9MM1-X96l779MENw_exo0Rkkpufnw-M_j4eL26WHOzpn8AzUirsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199134940</pqid></control><display><type>article</type><title>Microwave and conventional curing of thick-section thermoset composite laminates: Experiment and simulation</title><source>Wiley-Blackwell Journals</source><creator>Thostenson, Erik T. ; Chou, Tsu-Wei</creator><creatorcontrib>Thostenson, Erik T. ; Chou, Tsu-Wei</creatorcontrib><description>In conventional processing, thermal gradients cause differential curing of thick laminates and undesirable outside‐in solidification. To reduce thermal gradients, thick laminates are processed at lower cure temperatures and heated with slow heating rates, resulting in excessive cure times. Microwaves can transmit energy volumetrically and instantaneously through direct interaction of materials with applied electromagnetic fields. The more efficient energy transfer of microwaves can alleviate the problems associated with differential curing, and the preferred inside‐out solidification can be obtained. In this work, both microwave curing and thermal curing of 24.5 mm (1 inch) thick‐section glass/epoxy laminates are investigated through the development of a numerical process simulation and conducting experiments in processing thick laminates in a conventional autoclave and a microwave furnace. Outside‐in curing of the autoclave‐processed laminate resulted in visible matrix cracks, while cracks were not visible in the microwave‐processed laminate. Both numerical and experimental results show that volumetric heating due to microwaves promotes an inside‐out cure and can dramatically reduce the overall processing time.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.10531</identifier><identifier>CODEN: PCOMDI</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Exact sciences and technology ; Forms of application and semi-finished materials ; Laminates ; Polymer industry, paints, wood ; Technology of polymers</subject><ispartof>Polymer composites, 2001-04, Vol.22 (2), p.197-212</ispartof><rights>Copyright © 2001 Society of Plastics Engineers</rights><rights>2001 INIST-CNRS</rights><rights>Copyright Society of Plastics Engineers Apr 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4531-2becf0bd086f7446985044b585d2dfd6494ec301d6be940566470e438349bfde3</citedby><cites>FETCH-LOGICAL-c4531-2becf0bd086f7446985044b585d2dfd6494ec301d6be940566470e438349bfde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.10531$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.10531$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=953776$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Thostenson, Erik T.</creatorcontrib><creatorcontrib>Chou, Tsu-Wei</creatorcontrib><title>Microwave and conventional curing of thick-section thermoset composite laminates: Experiment and simulation</title><title>Polymer composites</title><addtitle>Polym Compos</addtitle><description>In conventional processing, thermal gradients cause differential curing of thick laminates and undesirable outside‐in solidification. To reduce thermal gradients, thick laminates are processed at lower cure temperatures and heated with slow heating rates, resulting in excessive cure times. Microwaves can transmit energy volumetrically and instantaneously through direct interaction of materials with applied electromagnetic fields. The more efficient energy transfer of microwaves can alleviate the problems associated with differential curing, and the preferred inside‐out solidification can be obtained. In this work, both microwave curing and thermal curing of 24.5 mm (1 inch) thick‐section glass/epoxy laminates are investigated through the development of a numerical process simulation and conducting experiments in processing thick laminates in a conventional autoclave and a microwave furnace. Outside‐in curing of the autoclave‐processed laminate resulted in visible matrix cracks, while cracks were not visible in the microwave‐processed laminate. Both numerical and experimental results show that volumetric heating due to microwaves promotes an inside‐out cure and can dramatically reduce the overall processing time.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Laminates</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90ctu1DAUBmALgcRQkHiECCTaTcCO7-zoqBfU4TISiKXlOCfgThIHO-nl7fF0pl0gwcqy_Pk_9jkIvST4LcG4eje6vHJKHqEF4UyVmAv9GC1wJatSUS2fomcpXWZJhKALtPnkXQzX9goKOzSFC8MVDJMPg-0KN0c__CxCW0y_vNuUCdz2JO8g9iHBlHk_huQnKDrb-8FOkN4XJzcjRN_nmLvI5Pu5s9uLz9GT1nYJXuzXA_T99OTb8rxcfTn7uPywKh3LDy-rGlyL6wYr0UrGhFYcM1ZzxZuqaRvBNANHMWlEDZrl_wkmMTCqKNN12wA9QIe73DGG3zOkyfQ-Oeg6O0CYk5GMVoqrimb55r-yElIRwUSGr_6Cl2GOuUnJEK1JrsxwRkc7lDuaUoTWjLkPNt4ags12OGZ05m44mb7e59nkbNdGOzifHrzmVMpt1XKnrn0Ht_9MM1-X96l779MENw_exo0Rkkpufnw-M_j4eL26WHOzpn8AzUirsQ</recordid><startdate>200104</startdate><enddate>200104</enddate><creator>Thostenson, Erik T.</creator><creator>Chou, Tsu-Wei</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Willey</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200104</creationdate><title>Microwave and conventional curing of thick-section thermoset composite laminates: Experiment and simulation</title><author>Thostenson, Erik T. ; Chou, Tsu-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4531-2becf0bd086f7446985044b585d2dfd6494ec301d6be940566470e438349bfde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Laminates</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thostenson, Erik T.</creatorcontrib><creatorcontrib>Chou, Tsu-Wei</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thostenson, Erik T.</au><au>Chou, Tsu-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave and conventional curing of thick-section thermoset composite laminates: Experiment and simulation</atitle><jtitle>Polymer composites</jtitle><addtitle>Polym Compos</addtitle><date>2001-04</date><risdate>2001</risdate><volume>22</volume><issue>2</issue><spage>197</spage><epage>212</epage><pages>197-212</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><coden>PCOMDI</coden><abstract>In conventional processing, thermal gradients cause differential curing of thick laminates and undesirable outside‐in solidification. To reduce thermal gradients, thick laminates are processed at lower cure temperatures and heated with slow heating rates, resulting in excessive cure times. Microwaves can transmit energy volumetrically and instantaneously through direct interaction of materials with applied electromagnetic fields. The more efficient energy transfer of microwaves can alleviate the problems associated with differential curing, and the preferred inside‐out solidification can be obtained. In this work, both microwave curing and thermal curing of 24.5 mm (1 inch) thick‐section glass/epoxy laminates are investigated through the development of a numerical process simulation and conducting experiments in processing thick laminates in a conventional autoclave and a microwave furnace. Outside‐in curing of the autoclave‐processed laminate resulted in visible matrix cracks, while cracks were not visible in the microwave‐processed laminate. Both numerical and experimental results show that volumetric heating due to microwaves promotes an inside‐out cure and can dramatically reduce the overall processing time.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pc.10531</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0272-8397
ispartof Polymer composites, 2001-04, Vol.22 (2), p.197-212
issn 0272-8397
1548-0569
language eng
recordid cdi_proquest_miscellaneous_743285823
source Wiley-Blackwell Journals
subjects Applied sciences
Exact sciences and technology
Forms of application and semi-finished materials
Laminates
Polymer industry, paints, wood
Technology of polymers
title Microwave and conventional curing of thick-section thermoset composite laminates: Experiment and simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave%20and%20conventional%20curing%20of%20thick-section%20thermoset%20composite%20laminates:%20Experiment%20and%20simulation&rft.jtitle=Polymer%20composites&rft.au=Thostenson,%20Erik%20T.&rft.date=2001-04&rft.volume=22&rft.issue=2&rft.spage=197&rft.epage=212&rft.pages=197-212&rft.issn=0272-8397&rft.eissn=1548-0569&rft.coden=PCOMDI&rft_id=info:doi/10.1002/pc.10531&rft_dat=%3Cproquest_cross%3E26781646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199134940&rft_id=info:pmid/&rfr_iscdi=true