Magnetohydrodynamic Simulations of Shock Interactions with Radiative Clouds

We present results from two-dimensional numerical simulations of the interactions between magnetized shocks and radiative clouds. Our primary goal is to characterize the dynamical evolution of the shocked clouds. We perform runs in both the strong and weak magnetic field limits and consider three di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2005-01, Vol.619 (1), p.327-339
Hauptverfasser: Fragile, P. Chris, Anninos, Peter, Gustafson, Kyle, Murray, Stephen D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 339
container_issue 1
container_start_page 327
container_title The Astrophysical journal
container_volume 619
creator Fragile, P. Chris
Anninos, Peter
Gustafson, Kyle
Murray, Stephen D
description We present results from two-dimensional numerical simulations of the interactions between magnetized shocks and radiative clouds. Our primary goal is to characterize the dynamical evolution of the shocked clouds. We perform runs in both the strong and weak magnetic field limits and consider three different field orientations. For the geometries considered, we generally find that magnetic fields external to, but concentrated near, the surface of the cloud suppress the growth of destructive hydrodynamic instabilities. External fields also increase the compression of the cloud by effectively acting as a confinement mechanism driven by the interstellar flow and local field stretching. This can have a dramatic effect on both the efficiency of radiative cooling, which tends to increase with increasing magnetic field strength, and on the size and distribution of condensed cooled fragments. In contrast, fields acting predominately internally to the cloud tend to resist compression, thereby inhibiting cooling. We observe that, even at modest strengths (b sub(0) 100), internal fields can completely suppress low-temperature (T < 100 K) cooling in two-dimensional clouds.
doi_str_mv 10.1086/426313
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_miscellaneous_743285025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19413356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-3456dbc6cde5cc4ffdb0ad9a00c06c0e01118149e0f1cee52a46e7bde37b273e3</originalsourceid><addsrcrecordid>eNp90VtLwzAYBuAgCs6pv6FeqCBUc257KcPDcCI4Be9CmqQu2jYzaZX9e1s6HCh4Fb58D2_gDQCHCJ4jmPILijlBZAuMECNpTAlLtsEIQkhjTpKXXbAXwls_4iwbgbt7-Vqbxi1W2ju9qmVlVTS3VVvKxro6RK6I5gun3qNp3Rgv1XD7ZZtF9Ci17dSniSala3XYBzuFLIM5WJ9j8Hx99TS5jWcPN9PJ5SxWFGZNTCjjOldcacOUokWhcyh1JiFUkCtoIEIoRTQzsEDKGIYl5SbJtSFJjhNiyBicDrlL7z5aExpR2aBMWcrauDaIhBKcMohZJ0_-lSijiBDGN1B5F4I3hVh6W0m_EgiKvlUxtNrB43WiDEqWhZe1smGjOcMMJ7hzZ4Ozbvmz7VsX_ScIjjKBBMGJWOqiw0d_8a-HvwECdI50</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19413356</pqid></control><display><type>article</type><title>Magnetohydrodynamic Simulations of Shock Interactions with Radiative Clouds</title><source>Institute of Physics Open Access Journal Titles</source><creator>Fragile, P. Chris ; Anninos, Peter ; Gustafson, Kyle ; Murray, Stephen D</creator><creatorcontrib>Fragile, P. Chris ; Anninos, Peter ; Gustafson, Kyle ; Murray, Stephen D</creatorcontrib><description>We present results from two-dimensional numerical simulations of the interactions between magnetized shocks and radiative clouds. Our primary goal is to characterize the dynamical evolution of the shocked clouds. We perform runs in both the strong and weak magnetic field limits and consider three different field orientations. For the geometries considered, we generally find that magnetic fields external to, but concentrated near, the surface of the cloud suppress the growth of destructive hydrodynamic instabilities. External fields also increase the compression of the cloud by effectively acting as a confinement mechanism driven by the interstellar flow and local field stretching. This can have a dramatic effect on both the efficiency of radiative cooling, which tends to increase with increasing magnetic field strength, and on the size and distribution of condensed cooled fragments. In contrast, fields acting predominately internally to the cloud tend to resist compression, thereby inhibiting cooling. We observe that, even at modest strengths (b sub(0) 100), internal fields can completely suppress low-temperature (T &lt; 100 K) cooling in two-dimensional clouds.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1086/426313</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Chicago, IL: IOP Publishing</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology ; Fundamental aspects of astrophysics ; Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations ; Magnetohydrodynamics and plasmas</subject><ispartof>The Astrophysical journal, 2005-01, Vol.619 (1), p.327-339</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-3456dbc6cde5cc4ffdb0ad9a00c06c0e01118149e0f1cee52a46e7bde37b273e3</citedby><cites>FETCH-LOGICAL-c409t-3456dbc6cde5cc4ffdb0ad9a00c06c0e01118149e0f1cee52a46e7bde37b273e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1086/426313/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,782,786,27637,27933,27934,53940</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/0004-637X/619/1/327$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16525272$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fragile, P. Chris</creatorcontrib><creatorcontrib>Anninos, Peter</creatorcontrib><creatorcontrib>Gustafson, Kyle</creatorcontrib><creatorcontrib>Murray, Stephen D</creatorcontrib><title>Magnetohydrodynamic Simulations of Shock Interactions with Radiative Clouds</title><title>The Astrophysical journal</title><description>We present results from two-dimensional numerical simulations of the interactions between magnetized shocks and radiative clouds. Our primary goal is to characterize the dynamical evolution of the shocked clouds. We perform runs in both the strong and weak magnetic field limits and consider three different field orientations. For the geometries considered, we generally find that magnetic fields external to, but concentrated near, the surface of the cloud suppress the growth of destructive hydrodynamic instabilities. External fields also increase the compression of the cloud by effectively acting as a confinement mechanism driven by the interstellar flow and local field stretching. This can have a dramatic effect on both the efficiency of radiative cooling, which tends to increase with increasing magnetic field strength, and on the size and distribution of condensed cooled fragments. In contrast, fields acting predominately internally to the cloud tend to resist compression, thereby inhibiting cooling. We observe that, even at modest strengths (b sub(0) 100), internal fields can completely suppress low-temperature (T &lt; 100 K) cooling in two-dimensional clouds.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fundamental aspects of astrophysics</subject><subject>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</subject><subject>Magnetohydrodynamics and plasmas</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp90VtLwzAYBuAgCs6pv6FeqCBUc257KcPDcCI4Be9CmqQu2jYzaZX9e1s6HCh4Fb58D2_gDQCHCJ4jmPILijlBZAuMECNpTAlLtsEIQkhjTpKXXbAXwls_4iwbgbt7-Vqbxi1W2ju9qmVlVTS3VVvKxro6RK6I5gun3qNp3Rgv1XD7ZZtF9Ci17dSniSala3XYBzuFLIM5WJ9j8Hx99TS5jWcPN9PJ5SxWFGZNTCjjOldcacOUokWhcyh1JiFUkCtoIEIoRTQzsEDKGIYl5SbJtSFJjhNiyBicDrlL7z5aExpR2aBMWcrauDaIhBKcMohZJ0_-lSijiBDGN1B5F4I3hVh6W0m_EgiKvlUxtNrB43WiDEqWhZe1smGjOcMMJ7hzZ4Ozbvmz7VsX_ScIjjKBBMGJWOqiw0d_8a-HvwECdI50</recordid><startdate>20050120</startdate><enddate>20050120</enddate><creator>Fragile, P. Chris</creator><creator>Anninos, Peter</creator><creator>Gustafson, Kyle</creator><creator>Murray, Stephen D</creator><general>IOP Publishing</general><general>University of Chicago Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20050120</creationdate><title>Magnetohydrodynamic Simulations of Shock Interactions with Radiative Clouds</title><author>Fragile, P. Chris ; Anninos, Peter ; Gustafson, Kyle ; Murray, Stephen D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-3456dbc6cde5cc4ffdb0ad9a00c06c0e01118149e0f1cee52a46e7bde37b273e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fundamental aspects of astrophysics</topic><topic>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</topic><topic>Magnetohydrodynamics and plasmas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fragile, P. Chris</creatorcontrib><creatorcontrib>Anninos, Peter</creatorcontrib><creatorcontrib>Gustafson, Kyle</creatorcontrib><creatorcontrib>Murray, Stephen D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fragile, P. Chris</au><au>Anninos, Peter</au><au>Gustafson, Kyle</au><au>Murray, Stephen D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetohydrodynamic Simulations of Shock Interactions with Radiative Clouds</atitle><jtitle>The Astrophysical journal</jtitle><date>2005-01-20</date><risdate>2005</risdate><volume>619</volume><issue>1</issue><spage>327</spage><epage>339</epage><pages>327-339</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>We present results from two-dimensional numerical simulations of the interactions between magnetized shocks and radiative clouds. Our primary goal is to characterize the dynamical evolution of the shocked clouds. We perform runs in both the strong and weak magnetic field limits and consider three different field orientations. For the geometries considered, we generally find that magnetic fields external to, but concentrated near, the surface of the cloud suppress the growth of destructive hydrodynamic instabilities. External fields also increase the compression of the cloud by effectively acting as a confinement mechanism driven by the interstellar flow and local field stretching. This can have a dramatic effect on both the efficiency of radiative cooling, which tends to increase with increasing magnetic field strength, and on the size and distribution of condensed cooled fragments. In contrast, fields acting predominately internally to the cloud tend to resist compression, thereby inhibiting cooling. We observe that, even at modest strengths (b sub(0) 100), internal fields can completely suppress low-temperature (T &lt; 100 K) cooling in two-dimensional clouds.</abstract><cop>Chicago, IL</cop><pub>IOP Publishing</pub><doi>10.1086/426313</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2005-01, Vol.619 (1), p.327-339
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_miscellaneous_743285025
source Institute of Physics Open Access Journal Titles
subjects Astronomy
Earth, ocean, space
Exact sciences and technology
Fundamental aspects of astrophysics
Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations
Magnetohydrodynamics and plasmas
title Magnetohydrodynamic Simulations of Shock Interactions with Radiative Clouds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T22%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetohydrodynamic%20Simulations%20of%20Shock%20Interactions%20with%20Radiative%20Clouds&rft.jtitle=The%20Astrophysical%20journal&rft.au=Fragile,%20P.%20Chris&rft.date=2005-01-20&rft.volume=619&rft.issue=1&rft.spage=327&rft.epage=339&rft.pages=327-339&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1086/426313&rft_dat=%3Cproquest_O3W%3E19413356%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19413356&rft_id=info:pmid/&rfr_iscdi=true