Magnetohydrodynamic Simulations of Shock Interactions with Radiative Clouds
We present results from two-dimensional numerical simulations of the interactions between magnetized shocks and radiative clouds. Our primary goal is to characterize the dynamical evolution of the shocked clouds. We perform runs in both the strong and weak magnetic field limits and consider three di...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2005-01, Vol.619 (1), p.327-339 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 339 |
---|---|
container_issue | 1 |
container_start_page | 327 |
container_title | The Astrophysical journal |
container_volume | 619 |
creator | Fragile, P. Chris Anninos, Peter Gustafson, Kyle Murray, Stephen D |
description | We present results from two-dimensional numerical simulations of the interactions between magnetized shocks and radiative clouds. Our primary goal is to characterize the dynamical evolution of the shocked clouds. We perform runs in both the strong and weak magnetic field limits and consider three different field orientations. For the geometries considered, we generally find that magnetic fields external to, but concentrated near, the surface of the cloud suppress the growth of destructive hydrodynamic instabilities. External fields also increase the compression of the cloud by effectively acting as a confinement mechanism driven by the interstellar flow and local field stretching. This can have a dramatic effect on both the efficiency of radiative cooling, which tends to increase with increasing magnetic field strength, and on the size and distribution of condensed cooled fragments. In contrast, fields acting predominately internally to the cloud tend to resist compression, thereby inhibiting cooling. We observe that, even at modest strengths (b sub(0) 100), internal fields can completely suppress low-temperature (T < 100 K) cooling in two-dimensional clouds. |
doi_str_mv | 10.1086/426313 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_miscellaneous_743285025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19413356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-3456dbc6cde5cc4ffdb0ad9a00c06c0e01118149e0f1cee52a46e7bde37b273e3</originalsourceid><addsrcrecordid>eNp90VtLwzAYBuAgCs6pv6FeqCBUc257KcPDcCI4Be9CmqQu2jYzaZX9e1s6HCh4Fb58D2_gDQCHCJ4jmPILijlBZAuMECNpTAlLtsEIQkhjTpKXXbAXwls_4iwbgbt7-Vqbxi1W2ju9qmVlVTS3VVvKxro6RK6I5gun3qNp3Rgv1XD7ZZtF9Ci17dSniSala3XYBzuFLIM5WJ9j8Hx99TS5jWcPN9PJ5SxWFGZNTCjjOldcacOUokWhcyh1JiFUkCtoIEIoRTQzsEDKGIYl5SbJtSFJjhNiyBicDrlL7z5aExpR2aBMWcrauDaIhBKcMohZJ0_-lSijiBDGN1B5F4I3hVh6W0m_EgiKvlUxtNrB43WiDEqWhZe1smGjOcMMJ7hzZ4Ozbvmz7VsX_ScIjjKBBMGJWOqiw0d_8a-HvwECdI50</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19413356</pqid></control><display><type>article</type><title>Magnetohydrodynamic Simulations of Shock Interactions with Radiative Clouds</title><source>Institute of Physics Open Access Journal Titles</source><creator>Fragile, P. Chris ; Anninos, Peter ; Gustafson, Kyle ; Murray, Stephen D</creator><creatorcontrib>Fragile, P. Chris ; Anninos, Peter ; Gustafson, Kyle ; Murray, Stephen D</creatorcontrib><description>We present results from two-dimensional numerical simulations of the interactions between magnetized shocks and radiative clouds. Our primary goal is to characterize the dynamical evolution of the shocked clouds. We perform runs in both the strong and weak magnetic field limits and consider three different field orientations. For the geometries considered, we generally find that magnetic fields external to, but concentrated near, the surface of the cloud suppress the growth of destructive hydrodynamic instabilities. External fields also increase the compression of the cloud by effectively acting as a confinement mechanism driven by the interstellar flow and local field stretching. This can have a dramatic effect on both the efficiency of radiative cooling, which tends to increase with increasing magnetic field strength, and on the size and distribution of condensed cooled fragments. In contrast, fields acting predominately internally to the cloud tend to resist compression, thereby inhibiting cooling. We observe that, even at modest strengths (b sub(0) 100), internal fields can completely suppress low-temperature (T < 100 K) cooling in two-dimensional clouds.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1086/426313</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Chicago, IL: IOP Publishing</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology ; Fundamental aspects of astrophysics ; Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations ; Magnetohydrodynamics and plasmas</subject><ispartof>The Astrophysical journal, 2005-01, Vol.619 (1), p.327-339</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-3456dbc6cde5cc4ffdb0ad9a00c06c0e01118149e0f1cee52a46e7bde37b273e3</citedby><cites>FETCH-LOGICAL-c409t-3456dbc6cde5cc4ffdb0ad9a00c06c0e01118149e0f1cee52a46e7bde37b273e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1086/426313/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,782,786,27637,27933,27934,53940</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/0004-637X/619/1/327$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16525272$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fragile, P. Chris</creatorcontrib><creatorcontrib>Anninos, Peter</creatorcontrib><creatorcontrib>Gustafson, Kyle</creatorcontrib><creatorcontrib>Murray, Stephen D</creatorcontrib><title>Magnetohydrodynamic Simulations of Shock Interactions with Radiative Clouds</title><title>The Astrophysical journal</title><description>We present results from two-dimensional numerical simulations of the interactions between magnetized shocks and radiative clouds. Our primary goal is to characterize the dynamical evolution of the shocked clouds. We perform runs in both the strong and weak magnetic field limits and consider three different field orientations. For the geometries considered, we generally find that magnetic fields external to, but concentrated near, the surface of the cloud suppress the growth of destructive hydrodynamic instabilities. External fields also increase the compression of the cloud by effectively acting as a confinement mechanism driven by the interstellar flow and local field stretching. This can have a dramatic effect on both the efficiency of radiative cooling, which tends to increase with increasing magnetic field strength, and on the size and distribution of condensed cooled fragments. In contrast, fields acting predominately internally to the cloud tend to resist compression, thereby inhibiting cooling. We observe that, even at modest strengths (b sub(0) 100), internal fields can completely suppress low-temperature (T < 100 K) cooling in two-dimensional clouds.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fundamental aspects of astrophysics</subject><subject>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</subject><subject>Magnetohydrodynamics and plasmas</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp90VtLwzAYBuAgCs6pv6FeqCBUc257KcPDcCI4Be9CmqQu2jYzaZX9e1s6HCh4Fb58D2_gDQCHCJ4jmPILijlBZAuMECNpTAlLtsEIQkhjTpKXXbAXwls_4iwbgbt7-Vqbxi1W2ju9qmVlVTS3VVvKxro6RK6I5gun3qNp3Rgv1XD7ZZtF9Ci17dSniSala3XYBzuFLIM5WJ9j8Hx99TS5jWcPN9PJ5SxWFGZNTCjjOldcacOUokWhcyh1JiFUkCtoIEIoRTQzsEDKGIYl5SbJtSFJjhNiyBicDrlL7z5aExpR2aBMWcrauDaIhBKcMohZJ0_-lSijiBDGN1B5F4I3hVh6W0m_EgiKvlUxtNrB43WiDEqWhZe1smGjOcMMJ7hzZ4Ozbvmz7VsX_ScIjjKBBMGJWOqiw0d_8a-HvwECdI50</recordid><startdate>20050120</startdate><enddate>20050120</enddate><creator>Fragile, P. Chris</creator><creator>Anninos, Peter</creator><creator>Gustafson, Kyle</creator><creator>Murray, Stephen D</creator><general>IOP Publishing</general><general>University of Chicago Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20050120</creationdate><title>Magnetohydrodynamic Simulations of Shock Interactions with Radiative Clouds</title><author>Fragile, P. Chris ; Anninos, Peter ; Gustafson, Kyle ; Murray, Stephen D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-3456dbc6cde5cc4ffdb0ad9a00c06c0e01118149e0f1cee52a46e7bde37b273e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fundamental aspects of astrophysics</topic><topic>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</topic><topic>Magnetohydrodynamics and plasmas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fragile, P. Chris</creatorcontrib><creatorcontrib>Anninos, Peter</creatorcontrib><creatorcontrib>Gustafson, Kyle</creatorcontrib><creatorcontrib>Murray, Stephen D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fragile, P. Chris</au><au>Anninos, Peter</au><au>Gustafson, Kyle</au><au>Murray, Stephen D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetohydrodynamic Simulations of Shock Interactions with Radiative Clouds</atitle><jtitle>The Astrophysical journal</jtitle><date>2005-01-20</date><risdate>2005</risdate><volume>619</volume><issue>1</issue><spage>327</spage><epage>339</epage><pages>327-339</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>We present results from two-dimensional numerical simulations of the interactions between magnetized shocks and radiative clouds. Our primary goal is to characterize the dynamical evolution of the shocked clouds. We perform runs in both the strong and weak magnetic field limits and consider three different field orientations. For the geometries considered, we generally find that magnetic fields external to, but concentrated near, the surface of the cloud suppress the growth of destructive hydrodynamic instabilities. External fields also increase the compression of the cloud by effectively acting as a confinement mechanism driven by the interstellar flow and local field stretching. This can have a dramatic effect on both the efficiency of radiative cooling, which tends to increase with increasing magnetic field strength, and on the size and distribution of condensed cooled fragments. In contrast, fields acting predominately internally to the cloud tend to resist compression, thereby inhibiting cooling. We observe that, even at modest strengths (b sub(0) 100), internal fields can completely suppress low-temperature (T < 100 K) cooling in two-dimensional clouds.</abstract><cop>Chicago, IL</cop><pub>IOP Publishing</pub><doi>10.1086/426313</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2005-01, Vol.619 (1), p.327-339 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_miscellaneous_743285025 |
source | Institute of Physics Open Access Journal Titles |
subjects | Astronomy Earth, ocean, space Exact sciences and technology Fundamental aspects of astrophysics Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations Magnetohydrodynamics and plasmas |
title | Magnetohydrodynamic Simulations of Shock Interactions with Radiative Clouds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T22%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetohydrodynamic%20Simulations%20of%20Shock%20Interactions%20with%20Radiative%20Clouds&rft.jtitle=The%20Astrophysical%20journal&rft.au=Fragile,%20P.%20Chris&rft.date=2005-01-20&rft.volume=619&rft.issue=1&rft.spage=327&rft.epage=339&rft.pages=327-339&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1086/426313&rft_dat=%3Cproquest_O3W%3E19413356%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19413356&rft_id=info:pmid/&rfr_iscdi=true |