Models for severe plastic deformation by equal-channel angular extrusion
Severe-plastic deformation processes are receiving increasing attention as methods to develop ultrafine-grain microstructures at the nanoscale. One such process, equal-channel angular extrusion (ECAE), offers the ability to manufacture bulk products from a wide range of metals and alloys. Despite th...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2004-10, Vol.56 (10), p.69-77 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 77 |
---|---|
container_issue | 10 |
container_start_page | 69 |
container_title | JOM (1989) |
container_volume | 56 |
creator | Semiatin, S L Salem, A A Saran, M J |
description | Severe-plastic deformation processes are receiving increasing attention as methods to develop ultrafine-grain microstructures at the nanoscale. One such process, equal-channel angular extrusion (ECAE), offers the ability to manufacture bulk products from a wide range of metals and alloys. Despite the apparent simplicity of ECAE, however metal flow and texture evolution are complex. The application of process, crystal-plasticity, and workability models to describe deformation and the evolution of microstructure, texture, and defects during ECAE is summarized in this article. (Materials mentioned: 4340 steel; aluminum alloys; titanium; titanium alloys). |
doi_str_mv | 10.1007/s11837-004-0296-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743282991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29344640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-40b3b58b8d567cce8dae74aed3dec0dadb51c77adbd659a6b4b345eb2858ec4a3</originalsourceid><addsrcrecordid>eNqNkT1PwzAQhi0EEqXwA9gsBpgM_kycEVV8SUUsMFuOfYVUbtLaCSL_HpcyMQDTnU7PvSfdg9Apo5eM0vIqMaZFSSiVhPKqIOMemjAlBWFasf3cU1kSqYU-REcpLWnekRWboPvHzkNIeNFFnOAdIuB1sKlvHPaQhyvbN12L6xHDZrCBuDfbthCwbV-HYCOGjz4OKSPH6GBhQ4KT7zpFL7c3z7N7Mn-6e5hdz4kTleqJpLWola61V0XpHGhvoZQWvPDgqLe-VsyVZa6-UJUtalkLqaDmWmlw0ooputjlrmO3GSD1ZtUkByHYFrohmVIKrnlVsUye_0rySkhZSPo3qLksCqH-ATJB6dfpsx_gshtim_9iuOAqh3GZIbaDXOxSirAw69isbBwNo2Yr1eykmizVbKWaUXwCYRqVrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232566324</pqid></control><display><type>article</type><title>Models for severe plastic deformation by equal-channel angular extrusion</title><source>SpringerLink (Online service)</source><creator>Semiatin, S L ; Salem, A A ; Saran, M J</creator><creatorcontrib>Semiatin, S L ; Salem, A A ; Saran, M J</creatorcontrib><description>Severe-plastic deformation processes are receiving increasing attention as methods to develop ultrafine-grain microstructures at the nanoscale. One such process, equal-channel angular extrusion (ECAE), offers the ability to manufacture bulk products from a wide range of metals and alloys. Despite the apparent simplicity of ECAE, however metal flow and texture evolution are complex. The application of process, crystal-plasticity, and workability models to describe deformation and the evolution of microstructure, texture, and defects during ECAE is summarized in this article. (Materials mentioned: 4340 steel; aluminum alloys; titanium; titanium alloys).</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-004-0296-y</identifier><identifier>CODEN: JOMMER</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Deformation ; Friction ; Grain size ; Kinematics ; Mathematical models ; Metallurgy ; Microstructure ; Nanostructured materials ; Nanotechnology ; R&D ; Research & development ; Shear strain</subject><ispartof>JOM (1989), 2004-10, Vol.56 (10), p.69-77</ispartof><rights>Copyright Minerals, Metals & Materials Society Oct 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-40b3b58b8d567cce8dae74aed3dec0dadb51c77adbd659a6b4b345eb2858ec4a3</citedby><cites>FETCH-LOGICAL-c395t-40b3b58b8d567cce8dae74aed3dec0dadb51c77adbd659a6b4b345eb2858ec4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Semiatin, S L</creatorcontrib><creatorcontrib>Salem, A A</creatorcontrib><creatorcontrib>Saran, M J</creatorcontrib><title>Models for severe plastic deformation by equal-channel angular extrusion</title><title>JOM (1989)</title><description>Severe-plastic deformation processes are receiving increasing attention as methods to develop ultrafine-grain microstructures at the nanoscale. One such process, equal-channel angular extrusion (ECAE), offers the ability to manufacture bulk products from a wide range of metals and alloys. Despite the apparent simplicity of ECAE, however metal flow and texture evolution are complex. The application of process, crystal-plasticity, and workability models to describe deformation and the evolution of microstructure, texture, and defects during ECAE is summarized in this article. (Materials mentioned: 4340 steel; aluminum alloys; titanium; titanium alloys).</description><subject>Deformation</subject><subject>Friction</subject><subject>Grain size</subject><subject>Kinematics</subject><subject>Mathematical models</subject><subject>Metallurgy</subject><subject>Microstructure</subject><subject>Nanostructured materials</subject><subject>Nanotechnology</subject><subject>R&D</subject><subject>Research & development</subject><subject>Shear strain</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkT1PwzAQhi0EEqXwA9gsBpgM_kycEVV8SUUsMFuOfYVUbtLaCSL_HpcyMQDTnU7PvSfdg9Apo5eM0vIqMaZFSSiVhPKqIOMemjAlBWFasf3cU1kSqYU-REcpLWnekRWboPvHzkNIeNFFnOAdIuB1sKlvHPaQhyvbN12L6xHDZrCBuDfbthCwbV-HYCOGjz4OKSPH6GBhQ4KT7zpFL7c3z7N7Mn-6e5hdz4kTleqJpLWola61V0XpHGhvoZQWvPDgqLe-VsyVZa6-UJUtalkLqaDmWmlw0ooputjlrmO3GSD1ZtUkByHYFrohmVIKrnlVsUye_0rySkhZSPo3qLksCqH-ATJB6dfpsx_gshtim_9iuOAqh3GZIbaDXOxSirAw69isbBwNo2Yr1eykmizVbKWaUXwCYRqVrw</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Semiatin, S L</creator><creator>Salem, A A</creator><creator>Saran, M J</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>H8D</scope><scope>L7M</scope><scope>7QF</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>20041001</creationdate><title>Models for severe plastic deformation by equal-channel angular extrusion</title><author>Semiatin, S L ; Salem, A A ; Saran, M J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-40b3b58b8d567cce8dae74aed3dec0dadb51c77adbd659a6b4b345eb2858ec4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Deformation</topic><topic>Friction</topic><topic>Grain size</topic><topic>Kinematics</topic><topic>Mathematical models</topic><topic>Metallurgy</topic><topic>Microstructure</topic><topic>Nanostructured materials</topic><topic>Nanotechnology</topic><topic>R&D</topic><topic>Research & development</topic><topic>Shear strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Semiatin, S L</creatorcontrib><creatorcontrib>Salem, A A</creatorcontrib><creatorcontrib>Saran, M J</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM trade & industry</collection><collection>ProQuest Science Journals</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Semiatin, S L</au><au>Salem, A A</au><au>Saran, M J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Models for severe plastic deformation by equal-channel angular extrusion</atitle><jtitle>JOM (1989)</jtitle><date>2004-10-01</date><risdate>2004</risdate><volume>56</volume><issue>10</issue><spage>69</spage><epage>77</epage><pages>69-77</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><coden>JOMMER</coden><abstract>Severe-plastic deformation processes are receiving increasing attention as methods to develop ultrafine-grain microstructures at the nanoscale. One such process, equal-channel angular extrusion (ECAE), offers the ability to manufacture bulk products from a wide range of metals and alloys. Despite the apparent simplicity of ECAE, however metal flow and texture evolution are complex. The application of process, crystal-plasticity, and workability models to describe deformation and the evolution of microstructure, texture, and defects during ECAE is summarized in this article. (Materials mentioned: 4340 steel; aluminum alloys; titanium; titanium alloys).</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11837-004-0296-y</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2004-10, Vol.56 (10), p.69-77 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_proquest_miscellaneous_743282991 |
source | SpringerLink (Online service) |
subjects | Deformation Friction Grain size Kinematics Mathematical models Metallurgy Microstructure Nanostructured materials Nanotechnology R&D Research & development Shear strain |
title | Models for severe plastic deformation by equal-channel angular extrusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A30%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Models%20for%20severe%20plastic%20deformation%20by%20equal-channel%20angular%20extrusion&rft.jtitle=JOM%20(1989)&rft.au=Semiatin,%20S%20L&rft.date=2004-10-01&rft.volume=56&rft.issue=10&rft.spage=69&rft.epage=77&rft.pages=69-77&rft.issn=1047-4838&rft.eissn=1543-1851&rft.coden=JOMMER&rft_id=info:doi/10.1007/s11837-004-0296-y&rft_dat=%3Cproquest_cross%3E29344640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232566324&rft_id=info:pmid/&rfr_iscdi=true |