Mechanisms and circuitry underlying directional selectivity in the retina
In the retina, directionally selective ganglion cells respond with robust spiking to movement in their preferred direction, but show minimal response to movement in the opposite, or null, direction. The mechanisms and circuitry underlying this computation have remained controversial. Here we show, b...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2002-11, Vol.420 (6914), p.411-414 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 414 |
---|---|
container_issue | 6914 |
container_start_page | 411 |
container_title | Nature (London) |
container_volume | 420 |
creator | Werblin, Frank S Fried, Shelley I Münch, Thomas A |
description | In the retina, directionally selective ganglion cells respond with robust spiking to movement in their preferred direction, but show minimal response to movement in the opposite, or null, direction. The mechanisms and circuitry underlying this computation have remained controversial. Here we show, by isolating the excitatory and inhibitory inputs to directionally selective cells and measuring direct connections between these cells and presynaptic neurons, that a presynaptic interneuron, the starburst amacrine cell, delivers direct inhibition to directionally selective cells. The processes of starburst cells are connected asymmetrically to directionally selective cells: those pointing in the null direction deliver inhibition; those pointing in the preferred direction do not. Starburst cells project inhibition laterally ahead of a stimulus moving in the null direction. In addition, starburst inhibition is itself directionally selective: it is stronger for movement in the null direction. Excitation in response to null direction movement is reduced by an inhibitory signal acting at a site that is presynaptic to the directionally selective cell. The interplay of these components generates reduced excitation and enhanced inhibition in the null direction, thereby ensuring robust directional selectivity. |
doi_str_mv | 10.1038/nature01179 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743276103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A187569355</galeid><sourcerecordid>A187569355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c708t-32a1a19108819e62e9175f5fe13fa123977743c563a451522a2b306ba7454cc83</originalsourceid><addsrcrecordid>eNqF0l2LEzEUBuBBFLeuXnkv44IrorPmc5K5LMWPwqqgK14Op-mZbpaZTDfJiP33m9JiW6lKLhKSJ2_g5GTZU0ouKOH6rYM4eCSUqupeNqJClYUotbqfjQhhuiCalyfZoxBuCCGSKvEwO6FMyEppNsqmn9Bcg7OhCzm4eW6sN4ONfpUPbo6-XVm3yOfWo4m2d9DmAdv1-qeNq9y6PF5j7jFaB4-zBw20AZ9s59Ps-_t3V5OPxeWXD9PJ-LIwiuhYcAYUaEWJ1rTCkmFFlWxkg5Q3QBmvlFKCG1lyEJJKxoDNOClnoIQUxmh-mr3c5C59fztgiHVng8G2BYf9EOp0m6kyVSbJ839LpgQVRP4XUi0lq4RI8OwPeNMPPpUl1IwIoSvG12nFBi2gxdq6po8ezAIdemh7h41N22OqlSwrLuUu9MCbpb2t99HFEZTGHDtrjqa-OriQTMRfcQFDCPX029dD-_rvdnz1Y_L5qDa-D8FjUy-97cCvakrqdUfWex2Z9LNtyYZZh_Od3bZgAi-2AIKBtvHgjA07JwgXiq5_883GhXTkFuh3tT_-7vMN32z-zts3d4fm_qs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204489235</pqid></control><display><type>article</type><title>Mechanisms and circuitry underlying directional selectivity in the retina</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Werblin, Frank S ; Fried, Shelley I ; Münch, Thomas A</creator><creatorcontrib>Werblin, Frank S ; Fried, Shelley I ; Münch, Thomas A</creatorcontrib><description>In the retina, directionally selective ganglion cells respond with robust spiking to movement in their preferred direction, but show minimal response to movement in the opposite, or null, direction. The mechanisms and circuitry underlying this computation have remained controversial. Here we show, by isolating the excitatory and inhibitory inputs to directionally selective cells and measuring direct connections between these cells and presynaptic neurons, that a presynaptic interneuron, the starburst amacrine cell, delivers direct inhibition to directionally selective cells. The processes of starburst cells are connected asymmetrically to directionally selective cells: those pointing in the null direction deliver inhibition; those pointing in the preferred direction do not. Starburst cells project inhibition laterally ahead of a stimulus moving in the null direction. In addition, starburst inhibition is itself directionally selective: it is stronger for movement in the null direction. Excitation in response to null direction movement is reduced by an inhibitory signal acting at a site that is presynaptic to the directionally selective cell. The interplay of these components generates reduced excitation and enhanced inhibition in the null direction, thereby ensuring robust directional selectivity.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature01179</identifier><identifier>PMID: 12459782</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Action Potentials ; Amacrine Cells - physiology ; Animals ; Biological and medical sciences ; Calcium - metabolism ; Dendrites - physiology ; Electrophysiology ; Eye and associated structures. Visual pathways and centers. Vision ; Eyes & eyesight ; Fundamental and applied biological sciences. Psychology ; gamma-Aminobutyric Acid - metabolism ; Humanities and Social Sciences ; Inhibition ; letter ; Light ; Motion Perception - physiology ; multidisciplinary ; Neural Inhibition ; Neurons ; Photic Stimulation ; Presynaptic Terminals ; Rabbits ; Retina - cytology ; Retina - physiology ; Retinal Ganglion Cells - cytology ; Retinal Ganglion Cells - physiology ; Science ; Science (multidisciplinary) ; Vertebrates: nervous system and sense organs</subject><ispartof>Nature (London), 2002-11, Vol.420 (6914), p.411-414</ispartof><rights>Macmillan Magazines Ltd. 2002</rights><rights>2003 INIST-CNRS</rights><rights>COPYRIGHT 2002 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Nov 28, 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c708t-32a1a19108819e62e9175f5fe13fa123977743c563a451522a2b306ba7454cc83</citedby><cites>FETCH-LOGICAL-c708t-32a1a19108819e62e9175f5fe13fa123977743c563a451522a2b306ba7454cc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14034713$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12459782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Werblin, Frank S</creatorcontrib><creatorcontrib>Fried, Shelley I</creatorcontrib><creatorcontrib>Münch, Thomas A</creatorcontrib><title>Mechanisms and circuitry underlying directional selectivity in the retina</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>In the retina, directionally selective ganglion cells respond with robust spiking to movement in their preferred direction, but show minimal response to movement in the opposite, or null, direction. The mechanisms and circuitry underlying this computation have remained controversial. Here we show, by isolating the excitatory and inhibitory inputs to directionally selective cells and measuring direct connections between these cells and presynaptic neurons, that a presynaptic interneuron, the starburst amacrine cell, delivers direct inhibition to directionally selective cells. The processes of starburst cells are connected asymmetrically to directionally selective cells: those pointing in the null direction deliver inhibition; those pointing in the preferred direction do not. Starburst cells project inhibition laterally ahead of a stimulus moving in the null direction. In addition, starburst inhibition is itself directionally selective: it is stronger for movement in the null direction. Excitation in response to null direction movement is reduced by an inhibitory signal acting at a site that is presynaptic to the directionally selective cell. The interplay of these components generates reduced excitation and enhanced inhibition in the null direction, thereby ensuring robust directional selectivity.</description><subject>Action Potentials</subject><subject>Amacrine Cells - physiology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Calcium - metabolism</subject><subject>Dendrites - physiology</subject><subject>Electrophysiology</subject><subject>Eye and associated structures. Visual pathways and centers. Vision</subject><subject>Eyes & eyesight</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Inhibition</subject><subject>letter</subject><subject>Light</subject><subject>Motion Perception - physiology</subject><subject>multidisciplinary</subject><subject>Neural Inhibition</subject><subject>Neurons</subject><subject>Photic Stimulation</subject><subject>Presynaptic Terminals</subject><subject>Rabbits</subject><subject>Retina - cytology</subject><subject>Retina - physiology</subject><subject>Retinal Ganglion Cells - cytology</subject><subject>Retinal Ganglion Cells - physiology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0l2LEzEUBuBBFLeuXnkv44IrorPmc5K5LMWPwqqgK14Op-mZbpaZTDfJiP33m9JiW6lKLhKSJ2_g5GTZU0ouKOH6rYM4eCSUqupeNqJClYUotbqfjQhhuiCalyfZoxBuCCGSKvEwO6FMyEppNsqmn9Bcg7OhCzm4eW6sN4ONfpUPbo6-XVm3yOfWo4m2d9DmAdv1-qeNq9y6PF5j7jFaB4-zBw20AZ9s59Ps-_t3V5OPxeWXD9PJ-LIwiuhYcAYUaEWJ1rTCkmFFlWxkg5Q3QBmvlFKCG1lyEJJKxoDNOClnoIQUxmh-mr3c5C59fztgiHVng8G2BYf9EOp0m6kyVSbJ839LpgQVRP4XUi0lq4RI8OwPeNMPPpUl1IwIoSvG12nFBi2gxdq6po8ezAIdemh7h41N22OqlSwrLuUu9MCbpb2t99HFEZTGHDtrjqa-OriQTMRfcQFDCPX029dD-_rvdnz1Y_L5qDa-D8FjUy-97cCvakrqdUfWex2Z9LNtyYZZh_Od3bZgAi-2AIKBtvHgjA07JwgXiq5_883GhXTkFuh3tT_-7vMN32z-zts3d4fm_qs</recordid><startdate>20021128</startdate><enddate>20021128</enddate><creator>Werblin, Frank S</creator><creator>Fried, Shelley I</creator><creator>Münch, Thomas A</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20021128</creationdate><title>Mechanisms and circuitry underlying directional selectivity in the retina</title><author>Werblin, Frank S ; Fried, Shelley I ; Münch, Thomas A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c708t-32a1a19108819e62e9175f5fe13fa123977743c563a451522a2b306ba7454cc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Action Potentials</topic><topic>Amacrine Cells - physiology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Calcium - metabolism</topic><topic>Dendrites - physiology</topic><topic>Electrophysiology</topic><topic>Eye and associated structures. Visual pathways and centers. Vision</topic><topic>Eyes & eyesight</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Inhibition</topic><topic>letter</topic><topic>Light</topic><topic>Motion Perception - physiology</topic><topic>multidisciplinary</topic><topic>Neural Inhibition</topic><topic>Neurons</topic><topic>Photic Stimulation</topic><topic>Presynaptic Terminals</topic><topic>Rabbits</topic><topic>Retina - cytology</topic><topic>Retina - physiology</topic><topic>Retinal Ganglion Cells - cytology</topic><topic>Retinal Ganglion Cells - physiology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Werblin, Frank S</creatorcontrib><creatorcontrib>Fried, Shelley I</creatorcontrib><creatorcontrib>Münch, Thomas A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Werblin, Frank S</au><au>Fried, Shelley I</au><au>Münch, Thomas A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms and circuitry underlying directional selectivity in the retina</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2002-11-28</date><risdate>2002</risdate><volume>420</volume><issue>6914</issue><spage>411</spage><epage>414</epage><pages>411-414</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>In the retina, directionally selective ganglion cells respond with robust spiking to movement in their preferred direction, but show minimal response to movement in the opposite, or null, direction. The mechanisms and circuitry underlying this computation have remained controversial. Here we show, by isolating the excitatory and inhibitory inputs to directionally selective cells and measuring direct connections between these cells and presynaptic neurons, that a presynaptic interneuron, the starburst amacrine cell, delivers direct inhibition to directionally selective cells. The processes of starburst cells are connected asymmetrically to directionally selective cells: those pointing in the null direction deliver inhibition; those pointing in the preferred direction do not. Starburst cells project inhibition laterally ahead of a stimulus moving in the null direction. In addition, starburst inhibition is itself directionally selective: it is stronger for movement in the null direction. Excitation in response to null direction movement is reduced by an inhibitory signal acting at a site that is presynaptic to the directionally selective cell. The interplay of these components generates reduced excitation and enhanced inhibition in the null direction, thereby ensuring robust directional selectivity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>12459782</pmid><doi>10.1038/nature01179</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2002-11, Vol.420 (6914), p.411-414 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_743276103 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | Action Potentials Amacrine Cells - physiology Animals Biological and medical sciences Calcium - metabolism Dendrites - physiology Electrophysiology Eye and associated structures. Visual pathways and centers. Vision Eyes & eyesight Fundamental and applied biological sciences. Psychology gamma-Aminobutyric Acid - metabolism Humanities and Social Sciences Inhibition letter Light Motion Perception - physiology multidisciplinary Neural Inhibition Neurons Photic Stimulation Presynaptic Terminals Rabbits Retina - cytology Retina - physiology Retinal Ganglion Cells - cytology Retinal Ganglion Cells - physiology Science Science (multidisciplinary) Vertebrates: nervous system and sense organs |
title | Mechanisms and circuitry underlying directional selectivity in the retina |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A02%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20and%20circuitry%20underlying%20directional%20selectivity%20in%20the%20retina&rft.jtitle=Nature%20(London)&rft.au=Werblin,%20Frank%20S&rft.date=2002-11-28&rft.volume=420&rft.issue=6914&rft.spage=411&rft.epage=414&rft.pages=411-414&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature01179&rft_dat=%3Cgale_proqu%3EA187569355%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204489235&rft_id=info:pmid/12459782&rft_galeid=A187569355&rfr_iscdi=true |