Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals
We introduce a method to fabricate high-performance field-effect transistors on the surface of freestanding organic single crystals. The transistors are constructed by laminating a monolithic elastomeric transistor stamp against the surface of a crystal. This method, which eliminates exposure of the...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2004-03, Vol.303 (5664), p.1644-1646 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1646 |
---|---|
container_issue | 5664 |
container_start_page | 1644 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 303 |
creator | Sundar, Vikram C. Zaumseil, Jana Podzorov, Vitaly Menard, Etienne Willett, Robert L. Someya, Takao Gershenson, Michael E. Rogers, John A. |
description | We introduce a method to fabricate high-performance field-effect transistors on the surface of freestanding organic single crystals. The transistors are constructed by laminating a monolithic elastomeric transistor stamp against the surface of a crystal. This method, which eliminates exposure of the fragile organic surface to the hazards of conventional processing, enables fabrication of rubrene transistors with charge carrier mobilities as high as$\sim 15 cm^2/V\cdot s$and subthreshold slopes as low as$2 nF\cdot V/decade\cdot cm^2$. Multiple relamination of the transistor stamp against the same crystal does not affect the transistor characteristics; we exploit this reversibility to reveal anisotropic charge transport at the basal plane of rubrene. |
doi_str_mv | 10.1126/science.1094196 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743268513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A115832927</galeid><jstor_id>3836450</jstor_id><sourcerecordid>A115832927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c819t-e161627ac991e0274f938f230654fb63e22f1273c4972df26d711b0043f420533</originalsourceid><addsrcrecordid>eNqN082LEzEUAPBBFLdWz15EBkHFw3TzPRNva1nrQrHiroKnkKYvY8rMpCZTcf97UzqolaIlh3z9XkLIe1n2GKMJxkScR-OgMzDBSDIsxZ1slEa8kATRu9kIISqKCpX8LHsQ4xqhtCfp_ewMc4SFlHSUfblsdOx9C8GZ_CboLro0Dfl1r9tNfJ1_hO8Qols2kH8Ifum6Ovc2n37VoYa93_jQ567LF6HWXTpkGm5jr5v4MLtnUwePhn6cfXp7eTN9V8wXs6vpxbwwFZZ9AVhgQUptpMSASMmspJUlFAnO7FJQIMRiUlLDZElWlohVifESIUYtI4hTOs5e7s_dBP9tC7FXrYsGmkZ34LdRlYwSUXG8ky_-LXGyHIn_QlIRxCTmCT77C679NnTpuYpgyiWTbHdtsUe1bkC5zvo-aFNDB0E3vgPr0vIFxryiRKaXjrPJEZ_aClpnjga8OghIpocffa23Maqr6_en28Xn0-2b2cm2ms0PbXHMGt80UINK2TFdHPrzvTfBxxjAqk1wrQ63CiO1KwM1lIEayiBFPB3-ZbtsYfXbD3mfwPMB6Gh0Y1MiGxf_cLyknFTJPdm79a4qfu3TigrGEf0JLmISXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213594943</pqid></control><display><type>article</type><title>Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals</title><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Sundar, Vikram C. ; Zaumseil, Jana ; Podzorov, Vitaly ; Menard, Etienne ; Willett, Robert L. ; Someya, Takao ; Gershenson, Michael E. ; Rogers, John A.</creator><creatorcontrib>Sundar, Vikram C. ; Zaumseil, Jana ; Podzorov, Vitaly ; Menard, Etienne ; Willett, Robert L. ; Someya, Takao ; Gershenson, Michael E. ; Rogers, John A.</creatorcontrib><description>We introduce a method to fabricate high-performance field-effect transistors on the surface of freestanding organic single crystals. The transistors are constructed by laminating a monolithic elastomeric transistor stamp against the surface of a crystal. This method, which eliminates exposure of the fragile organic surface to the hazards of conventional processing, enables fabrication of rubrene transistors with charge carrier mobilities as high as$\sim 15 cm^2/V\cdot s$and subthreshold slopes as low as$2 nF\cdot V/decade\cdot cm^2$. Multiple relamination of the transistor stamp against the same crystal does not affect the transistor characteristics; we exploit this reversibility to reveal anisotropic charge transport at the basal plane of rubrene.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1094196</identifier><identifier>PMID: 15016993</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Anisotropy ; Applied sciences ; Crystal surfaces ; Crystals ; Design and construction ; Dielectric materials ; Elastomers ; Electric potential ; Electric properties ; Electrodes ; Electronics ; Exact sciences and technology ; Field effect transistors ; Laminates ; Manufacturing ; Materials ; Molecular Structure ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Single crystals ; Transistors ; Wetting front</subject><ispartof>Science (American Association for the Advancement of Science), 2004-03, Vol.303 (5664), p.1644-1646</ispartof><rights>Copyright 2004 American Association for the Advancement of Science</rights><rights>2004 INIST-CNRS</rights><rights>COPYRIGHT 2004 American Association for the Advancement of Science</rights><rights>COPYRIGHT 2004 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Mar 12, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c819t-e161627ac991e0274f938f230654fb63e22f1273c4972df26d711b0043f420533</citedby><cites>FETCH-LOGICAL-c819t-e161627ac991e0274f938f230654fb63e22f1273c4972df26d711b0043f420533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3836450$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3836450$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2884,2885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15573528$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15016993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sundar, Vikram C.</creatorcontrib><creatorcontrib>Zaumseil, Jana</creatorcontrib><creatorcontrib>Podzorov, Vitaly</creatorcontrib><creatorcontrib>Menard, Etienne</creatorcontrib><creatorcontrib>Willett, Robert L.</creatorcontrib><creatorcontrib>Someya, Takao</creatorcontrib><creatorcontrib>Gershenson, Michael E.</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><title>Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>We introduce a method to fabricate high-performance field-effect transistors on the surface of freestanding organic single crystals. The transistors are constructed by laminating a monolithic elastomeric transistor stamp against the surface of a crystal. This method, which eliminates exposure of the fragile organic surface to the hazards of conventional processing, enables fabrication of rubrene transistors with charge carrier mobilities as high as$\sim 15 cm^2/V\cdot s$and subthreshold slopes as low as$2 nF\cdot V/decade\cdot cm^2$. Multiple relamination of the transistor stamp against the same crystal does not affect the transistor characteristics; we exploit this reversibility to reveal anisotropic charge transport at the basal plane of rubrene.</description><subject>Anisotropy</subject><subject>Applied sciences</subject><subject>Crystal surfaces</subject><subject>Crystals</subject><subject>Design and construction</subject><subject>Dielectric materials</subject><subject>Elastomers</subject><subject>Electric potential</subject><subject>Electric properties</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Field effect transistors</subject><subject>Laminates</subject><subject>Manufacturing</subject><subject>Materials</subject><subject>Molecular Structure</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Single crystals</subject><subject>Transistors</subject><subject>Wetting front</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN082LEzEUAPBBFLdWz15EBkHFw3TzPRNva1nrQrHiroKnkKYvY8rMpCZTcf97UzqolaIlh3z9XkLIe1n2GKMJxkScR-OgMzDBSDIsxZ1slEa8kATRu9kIISqKCpX8LHsQ4xqhtCfp_ewMc4SFlHSUfblsdOx9C8GZ_CboLro0Dfl1r9tNfJ1_hO8Qols2kH8Ifum6Ovc2n37VoYa93_jQ567LF6HWXTpkGm5jr5v4MLtnUwePhn6cfXp7eTN9V8wXs6vpxbwwFZZ9AVhgQUptpMSASMmspJUlFAnO7FJQIMRiUlLDZElWlohVifESIUYtI4hTOs5e7s_dBP9tC7FXrYsGmkZ34LdRlYwSUXG8ky_-LXGyHIn_QlIRxCTmCT77C679NnTpuYpgyiWTbHdtsUe1bkC5zvo-aFNDB0E3vgPr0vIFxryiRKaXjrPJEZ_aClpnjga8OghIpocffa23Maqr6_en28Xn0-2b2cm2ms0PbXHMGt80UINK2TFdHPrzvTfBxxjAqk1wrQ63CiO1KwM1lIEayiBFPB3-ZbtsYfXbD3mfwPMB6Gh0Y1MiGxf_cLyknFTJPdm79a4qfu3TigrGEf0JLmISXw</recordid><startdate>20040312</startdate><enddate>20040312</enddate><creator>Sundar, Vikram C.</creator><creator>Zaumseil, Jana</creator><creator>Podzorov, Vitaly</creator><creator>Menard, Etienne</creator><creator>Willett, Robert L.</creator><creator>Someya, Takao</creator><creator>Gershenson, Michael E.</creator><creator>Rogers, John A.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>0-V</scope><scope>3V.</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88B</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9-</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M0P</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040312</creationdate><title>Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals</title><author>Sundar, Vikram C. ; Zaumseil, Jana ; Podzorov, Vitaly ; Menard, Etienne ; Willett, Robert L. ; Someya, Takao ; Gershenson, Michael E. ; Rogers, John A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c819t-e161627ac991e0274f938f230654fb63e22f1273c4972df26d711b0043f420533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Anisotropy</topic><topic>Applied sciences</topic><topic>Crystal surfaces</topic><topic>Crystals</topic><topic>Design and construction</topic><topic>Dielectric materials</topic><topic>Elastomers</topic><topic>Electric potential</topic><topic>Electric properties</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Field effect transistors</topic><topic>Laminates</topic><topic>Manufacturing</topic><topic>Materials</topic><topic>Molecular Structure</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Single crystals</topic><topic>Transistors</topic><topic>Wetting front</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sundar, Vikram C.</creatorcontrib><creatorcontrib>Zaumseil, Jana</creatorcontrib><creatorcontrib>Podzorov, Vitaly</creatorcontrib><creatorcontrib>Menard, Etienne</creatorcontrib><creatorcontrib>Willett, Robert L.</creatorcontrib><creatorcontrib>Someya, Takao</creatorcontrib><creatorcontrib>Gershenson, Michael E.</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agricultural Science Database</collection><collection>Education Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sundar, Vikram C.</au><au>Zaumseil, Jana</au><au>Podzorov, Vitaly</au><au>Menard, Etienne</au><au>Willett, Robert L.</au><au>Someya, Takao</au><au>Gershenson, Michael E.</au><au>Rogers, John A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2004-03-12</date><risdate>2004</risdate><volume>303</volume><issue>5664</issue><spage>1644</spage><epage>1646</epage><pages>1644-1646</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>We introduce a method to fabricate high-performance field-effect transistors on the surface of freestanding organic single crystals. The transistors are constructed by laminating a monolithic elastomeric transistor stamp against the surface of a crystal. This method, which eliminates exposure of the fragile organic surface to the hazards of conventional processing, enables fabrication of rubrene transistors with charge carrier mobilities as high as$\sim 15 cm^2/V\cdot s$and subthreshold slopes as low as$2 nF\cdot V/decade\cdot cm^2$. Multiple relamination of the transistor stamp against the same crystal does not affect the transistor characteristics; we exploit this reversibility to reveal anisotropic charge transport at the basal plane of rubrene.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>15016993</pmid><doi>10.1126/science.1094196</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2004-03, Vol.303 (5664), p.1644-1646 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_743268513 |
source | Science Magazine; JSTOR Archive Collection A-Z Listing |
subjects | Anisotropy Applied sciences Crystal surfaces Crystals Design and construction Dielectric materials Elastomers Electric potential Electric properties Electrodes Electronics Exact sciences and technology Field effect transistors Laminates Manufacturing Materials Molecular Structure Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Single crystals Transistors Wetting front |
title | Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elastomeric%20Transistor%20Stamps:%20Reversible%20Probing%20of%20Charge%20Transport%20in%20Organic%20Crystals&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Sundar,%20Vikram%20C.&rft.date=2004-03-12&rft.volume=303&rft.issue=5664&rft.spage=1644&rft.epage=1646&rft.pages=1644-1646&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1094196&rft_dat=%3Cgale_proqu%3EA115832927%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213594943&rft_id=info:pmid/15016993&rft_galeid=A115832927&rft_jstor_id=3836450&rfr_iscdi=true |