Allowing for the effect of data binning in a Bayesian Normal mixture model
The usual Gibbs sampling framework of the Bayesian mixture model is extended to account for binned data. This model involves the addition of a latent variable in the model which represents simulated values from the believed true distribution at each iteration of the algorithm. The technique results...
Gespeichert in:
Veröffentlicht in: | Computational statistics & data analysis 2010-04, Vol.54 (4), p.916-923 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 923 |
---|---|
container_issue | 4 |
container_start_page | 916 |
container_title | Computational statistics & data analysis |
container_volume | 54 |
creator | Alston, C.L. Mengersen, K.L. |
description | The usual Gibbs sampling framework of the Bayesian mixture model is extended to account for binned data. This model involves the addition of a latent variable in the model which represents simulated values from the believed true distribution at each iteration of the algorithm. The technique results in better model fit and recognition of the more subtle aspects of the density of the data. |
doi_str_mv | 10.1016/j.csda.2009.10.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743261662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947309003739</els_id><sourcerecordid>743261662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-b46e171227ad868932f294490ec97db36425737857d221fc5f41e89fd759a5333</originalsourceid><addsrcrecordid>eNp9Uc2OFCEYJEYTx9UX8MTFeOoRPqBpEi_rxp_dbPSiZ8LAh8ukuxmhZ3XeXjqz2eMeCpKiqlIpCHnL2ZYz3n_Yb30NbguMmUZsGRPPyIYPGjotFDwnmybSnZFavCSvat0zxkDqYUNuLscx_03zbxpzocsdUowR_UJzpMEtju7SPK_PaaaOfnInrMnN9HsukxvplP4tx4J0ygHH1-RFdGPFNw_3Bfn15fPPq2_d7Y-v11eXt52XRi3dTvbINQfQLgz9YAREMFIaht7osBO9BKWFHpQOADx6FSXHwcSglXFKCHFB3p9zDyX_OWJd7JSqx3F0M-ZjtVoK6HnfQ1PCWelLrrVgtIeSJldOljO77mb3dt3NrrutXNutmW7OpoIH9I8ORFyls7P3Vjgl23FqANZswqWGlTo0mJZrQNi7ZWph7x66uurdGIubfaqPoQDKDGDWph_POmzD3ScstvqEs8eQSvsNG3J6qvN_1NeaRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743261662</pqid></control><display><type>article</type><title>Allowing for the effect of data binning in a Bayesian Normal mixture model</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Alston, C.L. ; Mengersen, K.L.</creator><creatorcontrib>Alston, C.L. ; Mengersen, K.L.</creatorcontrib><description>The usual Gibbs sampling framework of the Bayesian mixture model is extended to account for binned data. This model involves the addition of a latent variable in the model which represents simulated values from the believed true distribution at each iteration of the algorithm. The technique results in better model fit and recognition of the more subtle aspects of the density of the data.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2009.10.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Distribution theory ; Exact sciences and technology ; General topics ; Mathematics ; Multivariate analysis ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Statistics</subject><ispartof>Computational statistics & data analysis, 2010-04, Vol.54 (4), p.916-923</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-b46e171227ad868932f294490ec97db36425737857d221fc5f41e89fd759a5333</citedby><cites>FETCH-LOGICAL-c495t-b46e171227ad868932f294490ec97db36425737857d221fc5f41e89fd759a5333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947309003739$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22598292$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeecsdana/v_3a54_3ay_3a2010_3ai_3a4_3ap_3a916-923.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Alston, C.L.</creatorcontrib><creatorcontrib>Mengersen, K.L.</creatorcontrib><title>Allowing for the effect of data binning in a Bayesian Normal mixture model</title><title>Computational statistics & data analysis</title><description>The usual Gibbs sampling framework of the Bayesian mixture model is extended to account for binned data. This model involves the addition of a latent variable in the model which represents simulated values from the believed true distribution at each iteration of the algorithm. The technique results in better model fit and recognition of the more subtle aspects of the density of the data.</description><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9Uc2OFCEYJEYTx9UX8MTFeOoRPqBpEi_rxp_dbPSiZ8LAh8ukuxmhZ3XeXjqz2eMeCpKiqlIpCHnL2ZYz3n_Yb30NbguMmUZsGRPPyIYPGjotFDwnmybSnZFavCSvat0zxkDqYUNuLscx_03zbxpzocsdUowR_UJzpMEtju7SPK_PaaaOfnInrMnN9HsukxvplP4tx4J0ygHH1-RFdGPFNw_3Bfn15fPPq2_d7Y-v11eXt52XRi3dTvbINQfQLgz9YAREMFIaht7osBO9BKWFHpQOADx6FSXHwcSglXFKCHFB3p9zDyX_OWJd7JSqx3F0M-ZjtVoK6HnfQ1PCWelLrrVgtIeSJldOljO77mb3dt3NrrutXNutmW7OpoIH9I8ORFyls7P3Vjgl23FqANZswqWGlTo0mJZrQNi7ZWph7x66uurdGIubfaqPoQDKDGDWph_POmzD3ScstvqEs8eQSvsNG3J6qvN_1NeaRw</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Alston, C.L.</creator><creator>Mengersen, K.L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100401</creationdate><title>Allowing for the effect of data binning in a Bayesian Normal mixture model</title><author>Alston, C.L. ; Mengersen, K.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-b46e171227ad868932f294490ec97db36425737857d221fc5f41e89fd759a5333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alston, C.L.</creatorcontrib><creatorcontrib>Mengersen, K.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics & data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alston, C.L.</au><au>Mengersen, K.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Allowing for the effect of data binning in a Bayesian Normal mixture model</atitle><jtitle>Computational statistics & data analysis</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>54</volume><issue>4</issue><spage>916</spage><epage>923</epage><pages>916-923</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>The usual Gibbs sampling framework of the Bayesian mixture model is extended to account for binned data. This model involves the addition of a latent variable in the model which represents simulated values from the believed true distribution at each iteration of the algorithm. The technique results in better model fit and recognition of the more subtle aspects of the density of the data.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2009.10.003</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9473 |
ispartof | Computational statistics & data analysis, 2010-04, Vol.54 (4), p.916-923 |
issn | 0167-9473 1872-7352 |
language | eng |
recordid | cdi_proquest_miscellaneous_743261662 |
source | RePEc; Elsevier ScienceDirect Journals |
subjects | Distribution theory Exact sciences and technology General topics Mathematics Multivariate analysis Numerical analysis Numerical analysis. Scientific computation Numerical methods in probability and statistics Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use Statistics |
title | Allowing for the effect of data binning in a Bayesian Normal mixture model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Allowing%20for%20the%20effect%20of%20data%20binning%20in%20a%20Bayesian%20Normal%20mixture%20model&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Alston,%20C.L.&rft.date=2010-04-01&rft.volume=54&rft.issue=4&rft.spage=916&rft.epage=923&rft.pages=916-923&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2009.10.003&rft_dat=%3Cproquest_cross%3E743261662%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743261662&rft_id=info:pmid/&rft_els_id=S0167947309003739&rfr_iscdi=true |