Allowing for the effect of data binning in a Bayesian Normal mixture model

The usual Gibbs sampling framework of the Bayesian mixture model is extended to account for binned data. This model involves the addition of a latent variable in the model which represents simulated values from the believed true distribution at each iteration of the algorithm. The technique results...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2010-04, Vol.54 (4), p.916-923
Hauptverfasser: Alston, C.L., Mengersen, K.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 923
container_issue 4
container_start_page 916
container_title Computational statistics & data analysis
container_volume 54
creator Alston, C.L.
Mengersen, K.L.
description The usual Gibbs sampling framework of the Bayesian mixture model is extended to account for binned data. This model involves the addition of a latent variable in the model which represents simulated values from the believed true distribution at each iteration of the algorithm. The technique results in better model fit and recognition of the more subtle aspects of the density of the data.
doi_str_mv 10.1016/j.csda.2009.10.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743261662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947309003739</els_id><sourcerecordid>743261662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-b46e171227ad868932f294490ec97db36425737857d221fc5f41e89fd759a5333</originalsourceid><addsrcrecordid>eNp9Uc2OFCEYJEYTx9UX8MTFeOoRPqBpEi_rxp_dbPSiZ8LAh8ukuxmhZ3XeXjqz2eMeCpKiqlIpCHnL2ZYz3n_Yb30NbguMmUZsGRPPyIYPGjotFDwnmybSnZFavCSvat0zxkDqYUNuLscx_03zbxpzocsdUowR_UJzpMEtju7SPK_PaaaOfnInrMnN9HsukxvplP4tx4J0ygHH1-RFdGPFNw_3Bfn15fPPq2_d7Y-v11eXt52XRi3dTvbINQfQLgz9YAREMFIaht7osBO9BKWFHpQOADx6FSXHwcSglXFKCHFB3p9zDyX_OWJd7JSqx3F0M-ZjtVoK6HnfQ1PCWelLrrVgtIeSJldOljO77mb3dt3NrrutXNutmW7OpoIH9I8ORFyls7P3Vjgl23FqANZswqWGlTo0mJZrQNi7ZWph7x66uurdGIubfaqPoQDKDGDWph_POmzD3ScstvqEs8eQSvsNG3J6qvN_1NeaRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743261662</pqid></control><display><type>article</type><title>Allowing for the effect of data binning in a Bayesian Normal mixture model</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Alston, C.L. ; Mengersen, K.L.</creator><creatorcontrib>Alston, C.L. ; Mengersen, K.L.</creatorcontrib><description>The usual Gibbs sampling framework of the Bayesian mixture model is extended to account for binned data. This model involves the addition of a latent variable in the model which represents simulated values from the believed true distribution at each iteration of the algorithm. The technique results in better model fit and recognition of the more subtle aspects of the density of the data.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2009.10.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Distribution theory ; Exact sciences and technology ; General topics ; Mathematics ; Multivariate analysis ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Statistics</subject><ispartof>Computational statistics &amp; data analysis, 2010-04, Vol.54 (4), p.916-923</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-b46e171227ad868932f294490ec97db36425737857d221fc5f41e89fd759a5333</citedby><cites>FETCH-LOGICAL-c495t-b46e171227ad868932f294490ec97db36425737857d221fc5f41e89fd759a5333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947309003739$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22598292$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeecsdana/v_3a54_3ay_3a2010_3ai_3a4_3ap_3a916-923.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Alston, C.L.</creatorcontrib><creatorcontrib>Mengersen, K.L.</creatorcontrib><title>Allowing for the effect of data binning in a Bayesian Normal mixture model</title><title>Computational statistics &amp; data analysis</title><description>The usual Gibbs sampling framework of the Bayesian mixture model is extended to account for binned data. This model involves the addition of a latent variable in the model which represents simulated values from the believed true distribution at each iteration of the algorithm. The technique results in better model fit and recognition of the more subtle aspects of the density of the data.</description><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9Uc2OFCEYJEYTx9UX8MTFeOoRPqBpEi_rxp_dbPSiZ8LAh8ukuxmhZ3XeXjqz2eMeCpKiqlIpCHnL2ZYz3n_Yb30NbguMmUZsGRPPyIYPGjotFDwnmybSnZFavCSvat0zxkDqYUNuLscx_03zbxpzocsdUowR_UJzpMEtju7SPK_PaaaOfnInrMnN9HsukxvplP4tx4J0ygHH1-RFdGPFNw_3Bfn15fPPq2_d7Y-v11eXt52XRi3dTvbINQfQLgz9YAREMFIaht7osBO9BKWFHpQOADx6FSXHwcSglXFKCHFB3p9zDyX_OWJd7JSqx3F0M-ZjtVoK6HnfQ1PCWelLrrVgtIeSJldOljO77mb3dt3NrrutXNutmW7OpoIH9I8ORFyls7P3Vjgl23FqANZswqWGlTo0mJZrQNi7ZWph7x66uurdGIubfaqPoQDKDGDWph_POmzD3ScstvqEs8eQSvsNG3J6qvN_1NeaRw</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Alston, C.L.</creator><creator>Mengersen, K.L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100401</creationdate><title>Allowing for the effect of data binning in a Bayesian Normal mixture model</title><author>Alston, C.L. ; Mengersen, K.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-b46e171227ad868932f294490ec97db36425737857d221fc5f41e89fd759a5333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alston, C.L.</creatorcontrib><creatorcontrib>Mengersen, K.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alston, C.L.</au><au>Mengersen, K.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Allowing for the effect of data binning in a Bayesian Normal mixture model</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>54</volume><issue>4</issue><spage>916</spage><epage>923</epage><pages>916-923</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>The usual Gibbs sampling framework of the Bayesian mixture model is extended to account for binned data. This model involves the addition of a latent variable in the model which represents simulated values from the believed true distribution at each iteration of the algorithm. The technique results in better model fit and recognition of the more subtle aspects of the density of the data.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2009.10.003</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2010-04, Vol.54 (4), p.916-923
issn 0167-9473
1872-7352
language eng
recordid cdi_proquest_miscellaneous_743261662
source RePEc; Elsevier ScienceDirect Journals
subjects Distribution theory
Exact sciences and technology
General topics
Mathematics
Multivariate analysis
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
Statistics
title Allowing for the effect of data binning in a Bayesian Normal mixture model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Allowing%20for%20the%20effect%20of%20data%20binning%20in%20a%20Bayesian%20Normal%20mixture%20model&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Alston,%20C.L.&rft.date=2010-04-01&rft.volume=54&rft.issue=4&rft.spage=916&rft.epage=923&rft.pages=916-923&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2009.10.003&rft_dat=%3Cproquest_cross%3E743261662%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743261662&rft_id=info:pmid/&rft_els_id=S0167947309003739&rfr_iscdi=true