Host Inhibition of a Bacterial Virulence Effector Triggers Immunity to Infection
Plant pathogenic bacteria secrete effector proteins that attack the host signaling machinery to suppress immunity. Effectors can be recognized by hosts leading to immunity. One such effector is AvrPtoB of Pseudomonas syringae, which degrades host protein kinases, such as tomato Fen, through an E3 li...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2009-05, Vol.324 (5928), p.784-787 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 787 |
---|---|
container_issue | 5928 |
container_start_page | 784 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 324 |
creator | Ntoukakis, Vardis Mucyn, Tatiana S Gimenez-Ibanez, Selena Chapman, Helen C Gutierrez, Jose R Balmuth, Alexi L Jones, Alexandra M.E Rathjen, John P |
description | Plant pathogenic bacteria secrete effector proteins that attack the host signaling machinery to suppress immunity. Effectors can be recognized by hosts leading to immunity. One such effector is AvrPtoB of Pseudomonas syringae, which degrades host protein kinases, such as tomato Fen, through an E3 ligase domain. Pto kinase, which is highly related to Fen, recognizes AvrPtoB in conjunction with the resistance protein Prf. Here we show that Pto is resistant to AvrPtoB-mediated degradation because it inactivates the E3 ligase domain. AvrPtoB ubiquitinated Fen within the catalytic cleft, leading to its breakdown and loss of the associated Prf protein. Pto avoids this by phosphorylating and inactivating the AvrPtoB E3 domain. Thus, inactivation of a pathogen virulence molecule is one mechanism by which plants resist disease. |
doi_str_mv | 10.1126/science.1169430 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743238594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20493900</jstor_id><sourcerecordid>20493900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-67c05981899ce3584f846cc0f3366338b1db8a4d69dd48034098b995d4ac73693</originalsourceid><addsrcrecordid>eNp9kU1v1DAURS0EotOBNSvAQgJWoc_f9hKqQkeqBBIt28hxnMGjJC52sui_x-lEVGLRlWXd42O9dxF6ReATIVSeZRf86Hy5SMMZPEEbAkZUhgJ7ijYATFYalDhBpzkfAEpm2HN0QgynTFO5QT8uY57wbvwdmjCFOOLYYYu_WDf5FGyPf4U098sX-KLrvJtiwtcp7Pc-ZbwbhnkM0x2eYjEsaRG8QM8622f_cj236ObrxfX5ZXX1_dvu_PNV5YRQUyWVA2E00cY4z4TmnebSOegYk5Ix3ZC20Za30rQt18A4GN0YI1punWLSsC36ePTepvhn9nmqh5Cd73s7-jjnWnFWRhRlK1v04VFSKkq1ulc-DlLQigLVBXz3H3iIcxrLuDUlTJa1U1mgsyPkUsw5-a6-TWGw6a4mUC_l1Wt59VpeefFm1c7N4NsHfm2rAO9XwGZn-y7Z0YX8j6OEa2Vg4V4fuUMuhT3kwA0zsHz09ph3NtZ2n4rj5icFwoBIqokU7C86u7N3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213600326</pqid></control><display><type>article</type><title>Host Inhibition of a Bacterial Virulence Effector Triggers Immunity to Infection</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Ntoukakis, Vardis ; Mucyn, Tatiana S ; Gimenez-Ibanez, Selena ; Chapman, Helen C ; Gutierrez, Jose R ; Balmuth, Alexi L ; Jones, Alexandra M.E ; Rathjen, John P</creator><creatorcontrib>Ntoukakis, Vardis ; Mucyn, Tatiana S ; Gimenez-Ibanez, Selena ; Chapman, Helen C ; Gutierrez, Jose R ; Balmuth, Alexi L ; Jones, Alexandra M.E ; Rathjen, John P</creatorcontrib><description>Plant pathogenic bacteria secrete effector proteins that attack the host signaling machinery to suppress immunity. Effectors can be recognized by hosts leading to immunity. One such effector is AvrPtoB of Pseudomonas syringae, which degrades host protein kinases, such as tomato Fen, through an E3 ligase domain. Pto kinase, which is highly related to Fen, recognizes AvrPtoB in conjunction with the resistance protein Prf. Here we show that Pto is resistant to AvrPtoB-mediated degradation because it inactivates the E3 ligase domain. AvrPtoB ubiquitinated Fen within the catalytic cleft, leading to its breakdown and loss of the associated Prf protein. Pto avoids this by phosphorylating and inactivating the AvrPtoB E3 domain. Thus, inactivation of a pathogen virulence molecule is one mechanism by which plants resist disease.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1169430</identifier><identifier>PMID: 19423826</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Bacteria ; Bacterial Proteins - antagonists & inhibitors ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Biological and medical sciences ; Fens ; Fundamental and applied biological sciences. Psychology ; Immunity ; Immunity, Innate ; Infections ; Kinases ; Lycopersicon esculentum ; Microbiology ; Molecular biology ; Mutant Proteins - metabolism ; Nicotiana - genetics ; Nicotiana - metabolism ; Nicotiana - microbiology ; Pathogenicity, virulence, toxins, bacteriocins, pyrogens, host-bacteria relations, miscellaneous strains ; Pathogens ; Phosphorylation ; Plant cells ; Plant Diseases - immunology ; Plant Diseases - microbiology ; Plant immunity ; Plant Leaves - metabolism ; Plant pathology ; Plant Proteins - metabolism ; Plants, Genetically Modified ; Protein Serine-Threonine Kinases - metabolism ; Protein Structure, Tertiary ; Proteins ; Pseudomonas syringae ; Pseudomonas syringae - genetics ; Pseudomonas syringae - growth & development ; Pseudomonas syringae - metabolism ; Pseudomonas syringae - pathogenicity ; Signal Transduction ; Solanum lycopersicum - genetics ; Solanum lycopersicum - metabolism ; Solanum lycopersicum - microbiology ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitination ; Virulence ; Virulence Factors - antagonists & inhibitors ; Virulence Factors - metabolism</subject><ispartof>Science (American Association for the Advancement of Science), 2009-05, Vol.324 (5928), p.784-787</ispartof><rights>Copyright 2009 American Association for the Advancement of Science</rights><rights>2009 INIST-CNRS</rights><rights>Copyright © 2009, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-67c05981899ce3584f846cc0f3366338b1db8a4d69dd48034098b995d4ac73693</citedby><cites>FETCH-LOGICAL-c557t-67c05981899ce3584f846cc0f3366338b1db8a4d69dd48034098b995d4ac73693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20493900$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20493900$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,782,786,805,2886,2887,27931,27932,58024,58257</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21487906$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19423826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ntoukakis, Vardis</creatorcontrib><creatorcontrib>Mucyn, Tatiana S</creatorcontrib><creatorcontrib>Gimenez-Ibanez, Selena</creatorcontrib><creatorcontrib>Chapman, Helen C</creatorcontrib><creatorcontrib>Gutierrez, Jose R</creatorcontrib><creatorcontrib>Balmuth, Alexi L</creatorcontrib><creatorcontrib>Jones, Alexandra M.E</creatorcontrib><creatorcontrib>Rathjen, John P</creatorcontrib><title>Host Inhibition of a Bacterial Virulence Effector Triggers Immunity to Infection</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Plant pathogenic bacteria secrete effector proteins that attack the host signaling machinery to suppress immunity. Effectors can be recognized by hosts leading to immunity. One such effector is AvrPtoB of Pseudomonas syringae, which degrades host protein kinases, such as tomato Fen, through an E3 ligase domain. Pto kinase, which is highly related to Fen, recognizes AvrPtoB in conjunction with the resistance protein Prf. Here we show that Pto is resistant to AvrPtoB-mediated degradation because it inactivates the E3 ligase domain. AvrPtoB ubiquitinated Fen within the catalytic cleft, leading to its breakdown and loss of the associated Prf protein. Pto avoids this by phosphorylating and inactivating the AvrPtoB E3 domain. Thus, inactivation of a pathogen virulence molecule is one mechanism by which plants resist disease.</description><subject>Bacteria</subject><subject>Bacterial Proteins - antagonists & inhibitors</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Fens</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Immunity</subject><subject>Immunity, Innate</subject><subject>Infections</subject><subject>Kinases</subject><subject>Lycopersicon esculentum</subject><subject>Microbiology</subject><subject>Molecular biology</subject><subject>Mutant Proteins - metabolism</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - metabolism</subject><subject>Nicotiana - microbiology</subject><subject>Pathogenicity, virulence, toxins, bacteriocins, pyrogens, host-bacteria relations, miscellaneous strains</subject><subject>Pathogens</subject><subject>Phosphorylation</subject><subject>Plant cells</subject><subject>Plant Diseases - immunology</subject><subject>Plant Diseases - microbiology</subject><subject>Plant immunity</subject><subject>Plant Leaves - metabolism</subject><subject>Plant pathology</subject><subject>Plant Proteins - metabolism</subject><subject>Plants, Genetically Modified</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Pseudomonas syringae</subject><subject>Pseudomonas syringae - genetics</subject><subject>Pseudomonas syringae - growth & development</subject><subject>Pseudomonas syringae - metabolism</subject><subject>Pseudomonas syringae - pathogenicity</subject><subject>Signal Transduction</subject><subject>Solanum lycopersicum - genetics</subject><subject>Solanum lycopersicum - metabolism</subject><subject>Solanum lycopersicum - microbiology</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitination</subject><subject>Virulence</subject><subject>Virulence Factors - antagonists & inhibitors</subject><subject>Virulence Factors - metabolism</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAURS0EotOBNSvAQgJWoc_f9hKqQkeqBBIt28hxnMGjJC52sui_x-lEVGLRlWXd42O9dxF6ReATIVSeZRf86Hy5SMMZPEEbAkZUhgJ7ijYATFYalDhBpzkfAEpm2HN0QgynTFO5QT8uY57wbvwdmjCFOOLYYYu_WDf5FGyPf4U098sX-KLrvJtiwtcp7Pc-ZbwbhnkM0x2eYjEsaRG8QM8622f_cj236ObrxfX5ZXX1_dvu_PNV5YRQUyWVA2E00cY4z4TmnebSOegYk5Ix3ZC20Za30rQt18A4GN0YI1punWLSsC36ePTepvhn9nmqh5Cd73s7-jjnWnFWRhRlK1v04VFSKkq1ulc-DlLQigLVBXz3H3iIcxrLuDUlTJa1U1mgsyPkUsw5-a6-TWGw6a4mUC_l1Wt59VpeefFm1c7N4NsHfm2rAO9XwGZn-y7Z0YX8j6OEa2Vg4V4fuUMuhT3kwA0zsHz09ph3NtZ2n4rj5icFwoBIqokU7C86u7N3</recordid><startdate>20090508</startdate><enddate>20090508</enddate><creator>Ntoukakis, Vardis</creator><creator>Mucyn, Tatiana S</creator><creator>Gimenez-Ibanez, Selena</creator><creator>Chapman, Helen C</creator><creator>Gutierrez, Jose R</creator><creator>Balmuth, Alexi L</creator><creator>Jones, Alexandra M.E</creator><creator>Rathjen, John P</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20090508</creationdate><title>Host Inhibition of a Bacterial Virulence Effector Triggers Immunity to Infection</title><author>Ntoukakis, Vardis ; Mucyn, Tatiana S ; Gimenez-Ibanez, Selena ; Chapman, Helen C ; Gutierrez, Jose R ; Balmuth, Alexi L ; Jones, Alexandra M.E ; Rathjen, John P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-67c05981899ce3584f846cc0f3366338b1db8a4d69dd48034098b995d4ac73693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bacteria</topic><topic>Bacterial Proteins - antagonists & inhibitors</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Fens</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Immunity</topic><topic>Immunity, Innate</topic><topic>Infections</topic><topic>Kinases</topic><topic>Lycopersicon esculentum</topic><topic>Microbiology</topic><topic>Molecular biology</topic><topic>Mutant Proteins - metabolism</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - metabolism</topic><topic>Nicotiana - microbiology</topic><topic>Pathogenicity, virulence, toxins, bacteriocins, pyrogens, host-bacteria relations, miscellaneous strains</topic><topic>Pathogens</topic><topic>Phosphorylation</topic><topic>Plant cells</topic><topic>Plant Diseases - immunology</topic><topic>Plant Diseases - microbiology</topic><topic>Plant immunity</topic><topic>Plant Leaves - metabolism</topic><topic>Plant pathology</topic><topic>Plant Proteins - metabolism</topic><topic>Plants, Genetically Modified</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Pseudomonas syringae</topic><topic>Pseudomonas syringae - genetics</topic><topic>Pseudomonas syringae - growth & development</topic><topic>Pseudomonas syringae - metabolism</topic><topic>Pseudomonas syringae - pathogenicity</topic><topic>Signal Transduction</topic><topic>Solanum lycopersicum - genetics</topic><topic>Solanum lycopersicum - metabolism</topic><topic>Solanum lycopersicum - microbiology</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitination</topic><topic>Virulence</topic><topic>Virulence Factors - antagonists & inhibitors</topic><topic>Virulence Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ntoukakis, Vardis</creatorcontrib><creatorcontrib>Mucyn, Tatiana S</creatorcontrib><creatorcontrib>Gimenez-Ibanez, Selena</creatorcontrib><creatorcontrib>Chapman, Helen C</creatorcontrib><creatorcontrib>Gutierrez, Jose R</creatorcontrib><creatorcontrib>Balmuth, Alexi L</creatorcontrib><creatorcontrib>Jones, Alexandra M.E</creatorcontrib><creatorcontrib>Rathjen, John P</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ntoukakis, Vardis</au><au>Mucyn, Tatiana S</au><au>Gimenez-Ibanez, Selena</au><au>Chapman, Helen C</au><au>Gutierrez, Jose R</au><au>Balmuth, Alexi L</au><au>Jones, Alexandra M.E</au><au>Rathjen, John P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Host Inhibition of a Bacterial Virulence Effector Triggers Immunity to Infection</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2009-05-08</date><risdate>2009</risdate><volume>324</volume><issue>5928</issue><spage>784</spage><epage>787</epage><pages>784-787</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Plant pathogenic bacteria secrete effector proteins that attack the host signaling machinery to suppress immunity. Effectors can be recognized by hosts leading to immunity. One such effector is AvrPtoB of Pseudomonas syringae, which degrades host protein kinases, such as tomato Fen, through an E3 ligase domain. Pto kinase, which is highly related to Fen, recognizes AvrPtoB in conjunction with the resistance protein Prf. Here we show that Pto is resistant to AvrPtoB-mediated degradation because it inactivates the E3 ligase domain. AvrPtoB ubiquitinated Fen within the catalytic cleft, leading to its breakdown and loss of the associated Prf protein. Pto avoids this by phosphorylating and inactivating the AvrPtoB E3 domain. Thus, inactivation of a pathogen virulence molecule is one mechanism by which plants resist disease.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>19423826</pmid><doi>10.1126/science.1169430</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2009-05, Vol.324 (5928), p.784-787 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_743238594 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science |
subjects | Bacteria Bacterial Proteins - antagonists & inhibitors Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology Biological and medical sciences Fens Fundamental and applied biological sciences. Psychology Immunity Immunity, Innate Infections Kinases Lycopersicon esculentum Microbiology Molecular biology Mutant Proteins - metabolism Nicotiana - genetics Nicotiana - metabolism Nicotiana - microbiology Pathogenicity, virulence, toxins, bacteriocins, pyrogens, host-bacteria relations, miscellaneous strains Pathogens Phosphorylation Plant cells Plant Diseases - immunology Plant Diseases - microbiology Plant immunity Plant Leaves - metabolism Plant pathology Plant Proteins - metabolism Plants, Genetically Modified Protein Serine-Threonine Kinases - metabolism Protein Structure, Tertiary Proteins Pseudomonas syringae Pseudomonas syringae - genetics Pseudomonas syringae - growth & development Pseudomonas syringae - metabolism Pseudomonas syringae - pathogenicity Signal Transduction Solanum lycopersicum - genetics Solanum lycopersicum - metabolism Solanum lycopersicum - microbiology Ubiquitin-Protein Ligases - metabolism Ubiquitination Virulence Virulence Factors - antagonists & inhibitors Virulence Factors - metabolism |
title | Host Inhibition of a Bacterial Virulence Effector Triggers Immunity to Infection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T20%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Host%20Inhibition%20of%20a%20Bacterial%20Virulence%20Effector%20Triggers%20Immunity%20to%20Infection&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Ntoukakis,%20Vardis&rft.date=2009-05-08&rft.volume=324&rft.issue=5928&rft.spage=784&rft.epage=787&rft.pages=784-787&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1169430&rft_dat=%3Cjstor_proqu%3E20493900%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213600326&rft_id=info:pmid/19423826&rft_jstor_id=20493900&rfr_iscdi=true |