Implementing relevance feedback in the Bayesian Network Retrieval model
Relevance Feedback consists in automatically formulating a new query according to the relevance judgments provided by the user after evaluating a set of retrieved documents. In this article, we introduce several relevance feedback methods for the Bayesian Network Retrieval Model. The theoretical fra...
Gespeichert in:
Veröffentlicht in: | Journal of the American Society for Information Science and Technology 2003-02, Vol.54 (4), p.302-313 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 313 |
---|---|
container_issue | 4 |
container_start_page | 302 |
container_title | Journal of the American Society for Information Science and Technology |
container_volume | 54 |
creator | de Campos, Luis M. Fernández-Luna, Juan M. Huete, Juan F. |
description | Relevance Feedback consists in automatically formulating a new query according to the relevance judgments provided by the user after evaluating a set of retrieved documents. In this article, we introduce several relevance feedback methods for the Bayesian Network Retrieval Model. The theoretical frame on which our methods are based uses the concept of partial evidences, which summarize the new pieces of information gathered after evaluating the results obtained by the original query. These partial evidences are inserted into the underlying Bayesian network and a new inference process (probabilities propagation) is run to compute the posterior relevance probabilities of the documents in the collection given the new query. The quality of the proposed methods is tested using a preliminary experimentation with different standard document collections. |
doi_str_mv | 10.1002/asi.10210 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743233762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>57570522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4250-73dba6b05b268cb96662f637d509cdd8e27251bcdac4cc2db74123c21ecdf0653</originalsourceid><addsrcrecordid>eNp90F9P2zAUBfAIMYnS7YFvECFtiIdQ-zq2k0dAo1RCTGKgSXuxHOeGmTpJsdOVfnsM5Y-EtD35PvzOkXySZI-SI0oITHSw8QBKtpIR5QwyKEqy_XYXsJPshnBHCKWcklEynbULhy12g-1uU48O_-rOYNog1pU289R26fAH0xO9xmB1l17isOr9PL3CwduIXdr2NbrPyadGu4BfXt5xcnP2_fr0PLv4MZ2dHl9kJgdOMsliq6gIr0AUpiqFENAIJmtOSlPXBYIETitTa5MbA3UlcwrMAEVTN0RwNk4ONr0L398vMQyqtcGgc7rDfhmUzBkwJgVE-e2_kksuCYcnuP8B3vVL38VfKGCUk5zmNKLDDTK-D8FjoxbettqvFSXqaXkVl1fPy0f79aVQB6Nd4-OiNrwHcl7SsmTRTTZuZR2u_12ojn_OXpuzTcKGAR_eEtrPlZBMcvXrcqrk76uCnpNScfYILAOfSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>231504141</pqid></control><display><type>article</type><title>Implementing relevance feedback in the Bayesian Network Retrieval model</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>de Campos, Luis M. ; Fernández-Luna, Juan M. ; Huete, Juan F.</creator><creatorcontrib>de Campos, Luis M. ; Fernández-Luna, Juan M. ; Huete, Juan F.</creatorcontrib><description>Relevance Feedback consists in automatically formulating a new query according to the relevance judgments provided by the user after evaluating a set of retrieved documents. In this article, we introduce several relevance feedback methods for the Bayesian Network Retrieval Model. The theoretical frame on which our methods are based uses the concept of partial evidences, which summarize the new pieces of information gathered after evaluating the results obtained by the original query. These partial evidences are inserted into the underlying Bayesian network and a new inference process (probabilities propagation) is run to compute the posterior relevance probabilities of the documents in the collection given the new query. The quality of the proposed methods is tested using a preliminary experimentation with different standard document collections.</description><identifier>ISSN: 1532-2882</identifier><identifier>ISSN: 2330-1635</identifier><identifier>EISSN: 1532-2890</identifier><identifier>EISSN: 2330-1643</identifier><identifier>DOI: 10.1002/asi.10210</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Bayesian analysis ; Bayesian networks ; Computer networks ; Exact sciences and technology ; Experimentation ; Feedback ; Inference ; Information and communication sciences ; Information processing and retrieval ; Information retrieval ; Information retrieval. Man machine relationship ; Information science. Documentation ; Judgments ; Online information retrieval ; Probabilistic inference ; Probabilistic models ; Queries ; Relevance feedback ; Research process. Evaluation ; Retrieval ; Sciences and techniques of general use ; Studies ; Theory</subject><ispartof>Journal of the American Society for Information Science and Technology, 2003-02, Vol.54 (4), p.302-313</ispartof><rights>Copyright © 2003 Wiley Periodicals, Inc.</rights><rights>2003 INIST-CNRS</rights><rights>Copyright Wiley Periodicals Inc. Feb 15, 2003</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4250-73dba6b05b268cb96662f637d509cdd8e27251bcdac4cc2db74123c21ecdf0653</citedby><cites>FETCH-LOGICAL-c4250-73dba6b05b268cb96662f637d509cdd8e27251bcdac4cc2db74123c21ecdf0653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasi.10210$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasi.10210$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14591993$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>de Campos, Luis M.</creatorcontrib><creatorcontrib>Fernández-Luna, Juan M.</creatorcontrib><creatorcontrib>Huete, Juan F.</creatorcontrib><title>Implementing relevance feedback in the Bayesian Network Retrieval model</title><title>Journal of the American Society for Information Science and Technology</title><addtitle>J. Am. Soc. Inf. Sci</addtitle><description>Relevance Feedback consists in automatically formulating a new query according to the relevance judgments provided by the user after evaluating a set of retrieved documents. In this article, we introduce several relevance feedback methods for the Bayesian Network Retrieval Model. The theoretical frame on which our methods are based uses the concept of partial evidences, which summarize the new pieces of information gathered after evaluating the results obtained by the original query. These partial evidences are inserted into the underlying Bayesian network and a new inference process (probabilities propagation) is run to compute the posterior relevance probabilities of the documents in the collection given the new query. The quality of the proposed methods is tested using a preliminary experimentation with different standard document collections.</description><subject>Bayesian analysis</subject><subject>Bayesian networks</subject><subject>Computer networks</subject><subject>Exact sciences and technology</subject><subject>Experimentation</subject><subject>Feedback</subject><subject>Inference</subject><subject>Information and communication sciences</subject><subject>Information processing and retrieval</subject><subject>Information retrieval</subject><subject>Information retrieval. Man machine relationship</subject><subject>Information science. Documentation</subject><subject>Judgments</subject><subject>Online information retrieval</subject><subject>Probabilistic inference</subject><subject>Probabilistic models</subject><subject>Queries</subject><subject>Relevance feedback</subject><subject>Research process. Evaluation</subject><subject>Retrieval</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><subject>Theory</subject><issn>1532-2882</issn><issn>2330-1635</issn><issn>1532-2890</issn><issn>2330-1643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AIMQZ</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90F9P2zAUBfAIMYnS7YFvECFtiIdQ-zq2k0dAo1RCTGKgSXuxHOeGmTpJsdOVfnsM5Y-EtD35PvzOkXySZI-SI0oITHSw8QBKtpIR5QwyKEqy_XYXsJPshnBHCKWcklEynbULhy12g-1uU48O_-rOYNog1pU289R26fAH0xO9xmB1l17isOr9PL3CwduIXdr2NbrPyadGu4BfXt5xcnP2_fr0PLv4MZ2dHl9kJgdOMsliq6gIr0AUpiqFENAIJmtOSlPXBYIETitTa5MbA3UlcwrMAEVTN0RwNk4ONr0L398vMQyqtcGgc7rDfhmUzBkwJgVE-e2_kksuCYcnuP8B3vVL38VfKGCUk5zmNKLDDTK-D8FjoxbettqvFSXqaXkVl1fPy0f79aVQB6Nd4-OiNrwHcl7SsmTRTTZuZR2u_12ojn_OXpuzTcKGAR_eEtrPlZBMcvXrcqrk76uCnpNScfYILAOfSA</recordid><startdate>20030215</startdate><enddate>20030215</enddate><creator>de Campos, Luis M.</creator><creator>Fernández-Luna, Juan M.</creator><creator>Huete, Juan F.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>883</scope><scope>88B</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>LIQON</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0F</scope><scope>M0P</scope><scope>M1O</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20030215</creationdate><title>Implementing relevance feedback in the Bayesian Network Retrieval model</title><author>de Campos, Luis M. ; Fernández-Luna, Juan M. ; Huete, Juan F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4250-73dba6b05b268cb96662f637d509cdd8e27251bcdac4cc2db74123c21ecdf0653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Bayesian analysis</topic><topic>Bayesian networks</topic><topic>Computer networks</topic><topic>Exact sciences and technology</topic><topic>Experimentation</topic><topic>Feedback</topic><topic>Inference</topic><topic>Information and communication sciences</topic><topic>Information processing and retrieval</topic><topic>Information retrieval</topic><topic>Information retrieval. Man machine relationship</topic><topic>Information science. Documentation</topic><topic>Judgments</topic><topic>Online information retrieval</topic><topic>Probabilistic inference</topic><topic>Probabilistic models</topic><topic>Queries</topic><topic>Relevance feedback</topic><topic>Research process. Evaluation</topic><topic>Retrieval</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><topic>Theory</topic><toplevel>online_resources</toplevel><creatorcontrib>de Campos, Luis M.</creatorcontrib><creatorcontrib>Fernández-Luna, Juan M.</creatorcontrib><creatorcontrib>Huete, Juan F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Education Database</collection><collection>Library Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the American Society for Information Science and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Campos, Luis M.</au><au>Fernández-Luna, Juan M.</au><au>Huete, Juan F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementing relevance feedback in the Bayesian Network Retrieval model</atitle><jtitle>Journal of the American Society for Information Science and Technology</jtitle><addtitle>J. Am. Soc. Inf. Sci</addtitle><date>2003-02-15</date><risdate>2003</risdate><volume>54</volume><issue>4</issue><spage>302</spage><epage>313</epage><pages>302-313</pages><issn>1532-2882</issn><issn>2330-1635</issn><eissn>1532-2890</eissn><eissn>2330-1643</eissn><abstract>Relevance Feedback consists in automatically formulating a new query according to the relevance judgments provided by the user after evaluating a set of retrieved documents. In this article, we introduce several relevance feedback methods for the Bayesian Network Retrieval Model. The theoretical frame on which our methods are based uses the concept of partial evidences, which summarize the new pieces of information gathered after evaluating the results obtained by the original query. These partial evidences are inserted into the underlying Bayesian network and a new inference process (probabilities propagation) is run to compute the posterior relevance probabilities of the documents in the collection given the new query. The quality of the proposed methods is tested using a preliminary experimentation with different standard document collections.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/asi.10210</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-2882 |
ispartof | Journal of the American Society for Information Science and Technology, 2003-02, Vol.54 (4), p.302-313 |
issn | 1532-2882 2330-1635 1532-2890 2330-1643 |
language | eng |
recordid | cdi_proquest_miscellaneous_743233762 |
source | Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete |
subjects | Bayesian analysis Bayesian networks Computer networks Exact sciences and technology Experimentation Feedback Inference Information and communication sciences Information processing and retrieval Information retrieval Information retrieval. Man machine relationship Information science. Documentation Judgments Online information retrieval Probabilistic inference Probabilistic models Queries Relevance feedback Research process. Evaluation Retrieval Sciences and techniques of general use Studies Theory |
title | Implementing relevance feedback in the Bayesian Network Retrieval model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementing%20relevance%20feedback%20in%20the%20Bayesian%20Network%20Retrieval%20model&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Information%20Science%20and%20Technology&rft.au=de%20Campos,%20Luis%20M.&rft.date=2003-02-15&rft.volume=54&rft.issue=4&rft.spage=302&rft.epage=313&rft.pages=302-313&rft.issn=1532-2882&rft.eissn=1532-2890&rft_id=info:doi/10.1002/asi.10210&rft_dat=%3Cproquest_cross%3E57570522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=231504141&rft_id=info:pmid/&rfr_iscdi=true |