Implementing relevance feedback in the Bayesian Network Retrieval model

Relevance Feedback consists in automatically formulating a new query according to the relevance judgments provided by the user after evaluating a set of retrieved documents. In this article, we introduce several relevance feedback methods for the Bayesian Network Retrieval Model. The theoretical fra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society for Information Science and Technology 2003-02, Vol.54 (4), p.302-313
Hauptverfasser: de Campos, Luis M., Fernández-Luna, Juan M., Huete, Juan F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 313
container_issue 4
container_start_page 302
container_title Journal of the American Society for Information Science and Technology
container_volume 54
creator de Campos, Luis M.
Fernández-Luna, Juan M.
Huete, Juan F.
description Relevance Feedback consists in automatically formulating a new query according to the relevance judgments provided by the user after evaluating a set of retrieved documents. In this article, we introduce several relevance feedback methods for the Bayesian Network Retrieval Model. The theoretical frame on which our methods are based uses the concept of partial evidences, which summarize the new pieces of information gathered after evaluating the results obtained by the original query. These partial evidences are inserted into the underlying Bayesian network and a new inference process (probabilities propagation) is run to compute the posterior relevance probabilities of the documents in the collection given the new query. The quality of the proposed methods is tested using a preliminary experimentation with different standard document collections.
doi_str_mv 10.1002/asi.10210
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743233762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>57570522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4250-73dba6b05b268cb96662f637d509cdd8e27251bcdac4cc2db74123c21ecdf0653</originalsourceid><addsrcrecordid>eNp90F9P2zAUBfAIMYnS7YFvECFtiIdQ-zq2k0dAo1RCTGKgSXuxHOeGmTpJsdOVfnsM5Y-EtD35PvzOkXySZI-SI0oITHSw8QBKtpIR5QwyKEqy_XYXsJPshnBHCKWcklEynbULhy12g-1uU48O_-rOYNog1pU289R26fAH0xO9xmB1l17isOr9PL3CwduIXdr2NbrPyadGu4BfXt5xcnP2_fr0PLv4MZ2dHl9kJgdOMsliq6gIr0AUpiqFENAIJmtOSlPXBYIETitTa5MbA3UlcwrMAEVTN0RwNk4ONr0L398vMQyqtcGgc7rDfhmUzBkwJgVE-e2_kksuCYcnuP8B3vVL38VfKGCUk5zmNKLDDTK-D8FjoxbettqvFSXqaXkVl1fPy0f79aVQB6Nd4-OiNrwHcl7SsmTRTTZuZR2u_12ojn_OXpuzTcKGAR_eEtrPlZBMcvXrcqrk76uCnpNScfYILAOfSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>231504141</pqid></control><display><type>article</type><title>Implementing relevance feedback in the Bayesian Network Retrieval model</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>de Campos, Luis M. ; Fernández-Luna, Juan M. ; Huete, Juan F.</creator><creatorcontrib>de Campos, Luis M. ; Fernández-Luna, Juan M. ; Huete, Juan F.</creatorcontrib><description>Relevance Feedback consists in automatically formulating a new query according to the relevance judgments provided by the user after evaluating a set of retrieved documents. In this article, we introduce several relevance feedback methods for the Bayesian Network Retrieval Model. The theoretical frame on which our methods are based uses the concept of partial evidences, which summarize the new pieces of information gathered after evaluating the results obtained by the original query. These partial evidences are inserted into the underlying Bayesian network and a new inference process (probabilities propagation) is run to compute the posterior relevance probabilities of the documents in the collection given the new query. The quality of the proposed methods is tested using a preliminary experimentation with different standard document collections.</description><identifier>ISSN: 1532-2882</identifier><identifier>ISSN: 2330-1635</identifier><identifier>EISSN: 1532-2890</identifier><identifier>EISSN: 2330-1643</identifier><identifier>DOI: 10.1002/asi.10210</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Bayesian analysis ; Bayesian networks ; Computer networks ; Exact sciences and technology ; Experimentation ; Feedback ; Inference ; Information and communication sciences ; Information processing and retrieval ; Information retrieval ; Information retrieval. Man machine relationship ; Information science. Documentation ; Judgments ; Online information retrieval ; Probabilistic inference ; Probabilistic models ; Queries ; Relevance feedback ; Research process. Evaluation ; Retrieval ; Sciences and techniques of general use ; Studies ; Theory</subject><ispartof>Journal of the American Society for Information Science and Technology, 2003-02, Vol.54 (4), p.302-313</ispartof><rights>Copyright © 2003 Wiley Periodicals, Inc.</rights><rights>2003 INIST-CNRS</rights><rights>Copyright Wiley Periodicals Inc. Feb 15, 2003</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4250-73dba6b05b268cb96662f637d509cdd8e27251bcdac4cc2db74123c21ecdf0653</citedby><cites>FETCH-LOGICAL-c4250-73dba6b05b268cb96662f637d509cdd8e27251bcdac4cc2db74123c21ecdf0653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasi.10210$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasi.10210$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14591993$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>de Campos, Luis M.</creatorcontrib><creatorcontrib>Fernández-Luna, Juan M.</creatorcontrib><creatorcontrib>Huete, Juan F.</creatorcontrib><title>Implementing relevance feedback in the Bayesian Network Retrieval model</title><title>Journal of the American Society for Information Science and Technology</title><addtitle>J. Am. Soc. Inf. Sci</addtitle><description>Relevance Feedback consists in automatically formulating a new query according to the relevance judgments provided by the user after evaluating a set of retrieved documents. In this article, we introduce several relevance feedback methods for the Bayesian Network Retrieval Model. The theoretical frame on which our methods are based uses the concept of partial evidences, which summarize the new pieces of information gathered after evaluating the results obtained by the original query. These partial evidences are inserted into the underlying Bayesian network and a new inference process (probabilities propagation) is run to compute the posterior relevance probabilities of the documents in the collection given the new query. The quality of the proposed methods is tested using a preliminary experimentation with different standard document collections.</description><subject>Bayesian analysis</subject><subject>Bayesian networks</subject><subject>Computer networks</subject><subject>Exact sciences and technology</subject><subject>Experimentation</subject><subject>Feedback</subject><subject>Inference</subject><subject>Information and communication sciences</subject><subject>Information processing and retrieval</subject><subject>Information retrieval</subject><subject>Information retrieval. Man machine relationship</subject><subject>Information science. Documentation</subject><subject>Judgments</subject><subject>Online information retrieval</subject><subject>Probabilistic inference</subject><subject>Probabilistic models</subject><subject>Queries</subject><subject>Relevance feedback</subject><subject>Research process. Evaluation</subject><subject>Retrieval</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><subject>Theory</subject><issn>1532-2882</issn><issn>2330-1635</issn><issn>1532-2890</issn><issn>2330-1643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AIMQZ</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90F9P2zAUBfAIMYnS7YFvECFtiIdQ-zq2k0dAo1RCTGKgSXuxHOeGmTpJsdOVfnsM5Y-EtD35PvzOkXySZI-SI0oITHSw8QBKtpIR5QwyKEqy_XYXsJPshnBHCKWcklEynbULhy12g-1uU48O_-rOYNog1pU289R26fAH0xO9xmB1l17isOr9PL3CwduIXdr2NbrPyadGu4BfXt5xcnP2_fr0PLv4MZ2dHl9kJgdOMsliq6gIr0AUpiqFENAIJmtOSlPXBYIETitTa5MbA3UlcwrMAEVTN0RwNk4ONr0L398vMQyqtcGgc7rDfhmUzBkwJgVE-e2_kksuCYcnuP8B3vVL38VfKGCUk5zmNKLDDTK-D8FjoxbettqvFSXqaXkVl1fPy0f79aVQB6Nd4-OiNrwHcl7SsmTRTTZuZR2u_12ojn_OXpuzTcKGAR_eEtrPlZBMcvXrcqrk76uCnpNScfYILAOfSA</recordid><startdate>20030215</startdate><enddate>20030215</enddate><creator>de Campos, Luis M.</creator><creator>Fernández-Luna, Juan M.</creator><creator>Huete, Juan F.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>883</scope><scope>88B</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>LIQON</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0F</scope><scope>M0P</scope><scope>M1O</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20030215</creationdate><title>Implementing relevance feedback in the Bayesian Network Retrieval model</title><author>de Campos, Luis M. ; Fernández-Luna, Juan M. ; Huete, Juan F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4250-73dba6b05b268cb96662f637d509cdd8e27251bcdac4cc2db74123c21ecdf0653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Bayesian analysis</topic><topic>Bayesian networks</topic><topic>Computer networks</topic><topic>Exact sciences and technology</topic><topic>Experimentation</topic><topic>Feedback</topic><topic>Inference</topic><topic>Information and communication sciences</topic><topic>Information processing and retrieval</topic><topic>Information retrieval</topic><topic>Information retrieval. Man machine relationship</topic><topic>Information science. Documentation</topic><topic>Judgments</topic><topic>Online information retrieval</topic><topic>Probabilistic inference</topic><topic>Probabilistic models</topic><topic>Queries</topic><topic>Relevance feedback</topic><topic>Research process. Evaluation</topic><topic>Retrieval</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><topic>Theory</topic><toplevel>online_resources</toplevel><creatorcontrib>de Campos, Luis M.</creatorcontrib><creatorcontrib>Fernández-Luna, Juan M.</creatorcontrib><creatorcontrib>Huete, Juan F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Education Database</collection><collection>Library Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the American Society for Information Science and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Campos, Luis M.</au><au>Fernández-Luna, Juan M.</au><au>Huete, Juan F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementing relevance feedback in the Bayesian Network Retrieval model</atitle><jtitle>Journal of the American Society for Information Science and Technology</jtitle><addtitle>J. Am. Soc. Inf. Sci</addtitle><date>2003-02-15</date><risdate>2003</risdate><volume>54</volume><issue>4</issue><spage>302</spage><epage>313</epage><pages>302-313</pages><issn>1532-2882</issn><issn>2330-1635</issn><eissn>1532-2890</eissn><eissn>2330-1643</eissn><abstract>Relevance Feedback consists in automatically formulating a new query according to the relevance judgments provided by the user after evaluating a set of retrieved documents. In this article, we introduce several relevance feedback methods for the Bayesian Network Retrieval Model. The theoretical frame on which our methods are based uses the concept of partial evidences, which summarize the new pieces of information gathered after evaluating the results obtained by the original query. These partial evidences are inserted into the underlying Bayesian network and a new inference process (probabilities propagation) is run to compute the posterior relevance probabilities of the documents in the collection given the new query. The quality of the proposed methods is tested using a preliminary experimentation with different standard document collections.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/asi.10210</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1532-2882
ispartof Journal of the American Society for Information Science and Technology, 2003-02, Vol.54 (4), p.302-313
issn 1532-2882
2330-1635
1532-2890
2330-1643
language eng
recordid cdi_proquest_miscellaneous_743233762
source Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete
subjects Bayesian analysis
Bayesian networks
Computer networks
Exact sciences and technology
Experimentation
Feedback
Inference
Information and communication sciences
Information processing and retrieval
Information retrieval
Information retrieval. Man machine relationship
Information science. Documentation
Judgments
Online information retrieval
Probabilistic inference
Probabilistic models
Queries
Relevance feedback
Research process. Evaluation
Retrieval
Sciences and techniques of general use
Studies
Theory
title Implementing relevance feedback in the Bayesian Network Retrieval model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementing%20relevance%20feedback%20in%20the%20Bayesian%20Network%20Retrieval%20model&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Information%20Science%20and%20Technology&rft.au=de%20Campos,%20Luis%20M.&rft.date=2003-02-15&rft.volume=54&rft.issue=4&rft.spage=302&rft.epage=313&rft.pages=302-313&rft.issn=1532-2882&rft.eissn=1532-2890&rft_id=info:doi/10.1002/asi.10210&rft_dat=%3Cproquest_cross%3E57570522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=231504141&rft_id=info:pmid/&rfr_iscdi=true