A high-resolution Petrov–Galerkin method for the 1D convection–diffusion–reaction problem
We present the design of a high-resolution Petrov–Galerkin (HRPG) method using linear finite elements for the problem defined by the residual R ( ϕ ) ≔ ∂ ϕ ∂ t + u ∂ ϕ ∂ x - k ∂ 2 ϕ ∂ x 2 + s ϕ - f where k , s ⩾ 0 . The structure of the method in 1D is identical to the consistent approximate upwind...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2010-01, Vol.199 (9), p.525-546 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 546 |
---|---|
container_issue | 9 |
container_start_page | 525 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 199 |
creator | Nadukandi, Prashanth Oñate, Eugenio Garcia, Julio |
description | We present the design of a high-resolution Petrov–Galerkin (HRPG) method using linear finite elements for the problem defined by the residual
R
(
ϕ
)
≔
∂
ϕ
∂
t
+
u
∂
ϕ
∂
x
-
k
∂
2
ϕ
∂
x
2
+
s
ϕ
-
f
where
k
,
s
⩾
0
. The structure of the method in 1D is identical to the consistent approximate upwind Petrov–Galerkin (CAU/PG) method [A.C. Galeão, E.G. Dutra do Carmo, A consistent approximate upwind Petrov–Galerkin method for the convection-dominated problems, Comput. Methods Appl. Mech. Engrg. 68 (1988) 83–95] except for the definitions of the stabilization parameters. Such a structure may also be attained via the finite-calculus (FIC) procedure [E. Oñate, Derivation of stabilized equations for numerical solution of advective–diffusive transport and fluid flow problems, Comput. Methods Appl. Mech. Engrg. 151 (1998) 233–265; E. Oñate, J. Miquel, G. Hauke, Stabilized formulation for the advection–diffusion–absorption equation using finite-calculus and linear finite elements, Comput. Methods Appl. Mech. Engrg. 195 (2006) 3926–3946] by an appropriate definition of the characteristic length. The prefix ‘high-resolution’ is used here in the sense popularized by Harten, i.e. second order accuracy for smooth/regular regimes and good shock-capturing in nonregular regimes. The design procedure embarks on the problem of circumventing the Gibbs phenomenon observed in
L
2-projections. Next we study the conditions on the stabilization parameters to circumvent the global oscillations due to the convective term. A conjuncture of the two results is made to deal with the problem at hand that is usually plagued by Gibbs, global and dispersive oscillations in the numerical solution. It is shown that the method indeed reproduces stabilized high-resolution numerical solutions for a wide range of values of
u
,
k
,
s
and
f
. Finally, some remarks are made on the extension of the HRPG method to multidimensions. |
doi_str_mv | 10.1016/j.cma.2009.10.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743229031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782509003545</els_id><sourcerecordid>743229031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-ff71fb5280021a55693f41f5779f55ee58ad37133416ef0947e7c9049696c3b3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIHcMuNU4IfcRyLU1WgICHBoXcrddbEJYmLnVTixj_wh3wJDuXMXmZ3NLOrHYQuCc4IJsX1NtNdlVGMZZyzCEdoRkohU0pYeYxmGOc8FSXlp-gshC2OVRI6Q2qRNPa1ST0E146DdX3yAoN3--_Pr1XVgn-zfdLB0Lg6Mc4nQwMJuU206_egJ3nU1daYMRx6D9Uvney827TQnaMTU7UBLv5wjtb3d-vlQ_r0vHpcLp5SzagcUmMEMRtOS4wpqTgvJDM5MVwIaTgH4GVVM0EYy0kBBstcgNAS57KQhWYbNkdXh7Xx7PsIYVCdDRraturBjUGJnFEqMSNRSQ5K7V0IHozaedtV_kMRrKYo1VbFKNUU5URFiJ6bgwfiB3sLXgVtoddQWx9TULWz_7h_AA53fxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743229031</pqid></control><display><type>article</type><title>A high-resolution Petrov–Galerkin method for the 1D convection–diffusion–reaction problem</title><source>Elsevier ScienceDirect Journals</source><creator>Nadukandi, Prashanth ; Oñate, Eugenio ; Garcia, Julio</creator><creatorcontrib>Nadukandi, Prashanth ; Oñate, Eugenio ; Garcia, Julio</creatorcontrib><description>We present the design of a high-resolution Petrov–Galerkin (HRPG) method using linear finite elements for the problem defined by the residual
R
(
ϕ
)
≔
∂
ϕ
∂
t
+
u
∂
ϕ
∂
x
-
k
∂
2
ϕ
∂
x
2
+
s
ϕ
-
f
where
k
,
s
⩾
0
. The structure of the method in 1D is identical to the consistent approximate upwind Petrov–Galerkin (CAU/PG) method [A.C. Galeão, E.G. Dutra do Carmo, A consistent approximate upwind Petrov–Galerkin method for the convection-dominated problems, Comput. Methods Appl. Mech. Engrg. 68 (1988) 83–95] except for the definitions of the stabilization parameters. Such a structure may also be attained via the finite-calculus (FIC) procedure [E. Oñate, Derivation of stabilized equations for numerical solution of advective–diffusive transport and fluid flow problems, Comput. Methods Appl. Mech. Engrg. 151 (1998) 233–265; E. Oñate, J. Miquel, G. Hauke, Stabilized formulation for the advection–diffusion–absorption equation using finite-calculus and linear finite elements, Comput. Methods Appl. Mech. Engrg. 195 (2006) 3926–3946] by an appropriate definition of the characteristic length. The prefix ‘high-resolution’ is used here in the sense popularized by Harten, i.e. second order accuracy for smooth/regular regimes and good shock-capturing in nonregular regimes. The design procedure embarks on the problem of circumventing the Gibbs phenomenon observed in
L
2-projections. Next we study the conditions on the stabilization parameters to circumvent the global oscillations due to the convective term. A conjuncture of the two results is made to deal with the problem at hand that is usually plagued by Gibbs, global and dispersive oscillations in the numerical solution. It is shown that the method indeed reproduces stabilized high-resolution numerical solutions for a wide range of values of
u
,
k
,
s
and
f
. Finally, some remarks are made on the extension of the HRPG method to multidimensions.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2009.10.009</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Convection–diffusion–reaction ; Finite element ; Petrov–Galerkin ; Stabilized high-resolution methods</subject><ispartof>Computer methods in applied mechanics and engineering, 2010-01, Vol.199 (9), p.525-546</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-ff71fb5280021a55693f41f5779f55ee58ad37133416ef0947e7c9049696c3b3</citedby><cites>FETCH-LOGICAL-c329t-ff71fb5280021a55693f41f5779f55ee58ad37133416ef0947e7c9049696c3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2009.10.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Nadukandi, Prashanth</creatorcontrib><creatorcontrib>Oñate, Eugenio</creatorcontrib><creatorcontrib>Garcia, Julio</creatorcontrib><title>A high-resolution Petrov–Galerkin method for the 1D convection–diffusion–reaction problem</title><title>Computer methods in applied mechanics and engineering</title><description>We present the design of a high-resolution Petrov–Galerkin (HRPG) method using linear finite elements for the problem defined by the residual
R
(
ϕ
)
≔
∂
ϕ
∂
t
+
u
∂
ϕ
∂
x
-
k
∂
2
ϕ
∂
x
2
+
s
ϕ
-
f
where
k
,
s
⩾
0
. The structure of the method in 1D is identical to the consistent approximate upwind Petrov–Galerkin (CAU/PG) method [A.C. Galeão, E.G. Dutra do Carmo, A consistent approximate upwind Petrov–Galerkin method for the convection-dominated problems, Comput. Methods Appl. Mech. Engrg. 68 (1988) 83–95] except for the definitions of the stabilization parameters. Such a structure may also be attained via the finite-calculus (FIC) procedure [E. Oñate, Derivation of stabilized equations for numerical solution of advective–diffusive transport and fluid flow problems, Comput. Methods Appl. Mech. Engrg. 151 (1998) 233–265; E. Oñate, J. Miquel, G. Hauke, Stabilized formulation for the advection–diffusion–absorption equation using finite-calculus and linear finite elements, Comput. Methods Appl. Mech. Engrg. 195 (2006) 3926–3946] by an appropriate definition of the characteristic length. The prefix ‘high-resolution’ is used here in the sense popularized by Harten, i.e. second order accuracy for smooth/regular regimes and good shock-capturing in nonregular regimes. The design procedure embarks on the problem of circumventing the Gibbs phenomenon observed in
L
2-projections. Next we study the conditions on the stabilization parameters to circumvent the global oscillations due to the convective term. A conjuncture of the two results is made to deal with the problem at hand that is usually plagued by Gibbs, global and dispersive oscillations in the numerical solution. It is shown that the method indeed reproduces stabilized high-resolution numerical solutions for a wide range of values of
u
,
k
,
s
and
f
. Finally, some remarks are made on the extension of the HRPG method to multidimensions.</description><subject>Convection–diffusion–reaction</subject><subject>Finite element</subject><subject>Petrov–Galerkin</subject><subject>Stabilized high-resolution methods</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIHcMuNU4IfcRyLU1WgICHBoXcrddbEJYmLnVTixj_wh3wJDuXMXmZ3NLOrHYQuCc4IJsX1NtNdlVGMZZyzCEdoRkohU0pYeYxmGOc8FSXlp-gshC2OVRI6Q2qRNPa1ST0E146DdX3yAoN3--_Pr1XVgn-zfdLB0Lg6Mc4nQwMJuU206_egJ3nU1daYMRx6D9Uvney827TQnaMTU7UBLv5wjtb3d-vlQ_r0vHpcLp5SzagcUmMEMRtOS4wpqTgvJDM5MVwIaTgH4GVVM0EYy0kBBstcgNAS57KQhWYbNkdXh7Xx7PsIYVCdDRraturBjUGJnFEqMSNRSQ5K7V0IHozaedtV_kMRrKYo1VbFKNUU5URFiJ6bgwfiB3sLXgVtoddQWx9TULWz_7h_AA53fxU</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Nadukandi, Prashanth</creator><creator>Oñate, Eugenio</creator><creator>Garcia, Julio</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100101</creationdate><title>A high-resolution Petrov–Galerkin method for the 1D convection–diffusion–reaction problem</title><author>Nadukandi, Prashanth ; Oñate, Eugenio ; Garcia, Julio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-ff71fb5280021a55693f41f5779f55ee58ad37133416ef0947e7c9049696c3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Convection–diffusion–reaction</topic><topic>Finite element</topic><topic>Petrov–Galerkin</topic><topic>Stabilized high-resolution methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadukandi, Prashanth</creatorcontrib><creatorcontrib>Oñate, Eugenio</creatorcontrib><creatorcontrib>Garcia, Julio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadukandi, Prashanth</au><au>Oñate, Eugenio</au><au>Garcia, Julio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high-resolution Petrov–Galerkin method for the 1D convection–diffusion–reaction problem</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>199</volume><issue>9</issue><spage>525</spage><epage>546</epage><pages>525-546</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We present the design of a high-resolution Petrov–Galerkin (HRPG) method using linear finite elements for the problem defined by the residual
R
(
ϕ
)
≔
∂
ϕ
∂
t
+
u
∂
ϕ
∂
x
-
k
∂
2
ϕ
∂
x
2
+
s
ϕ
-
f
where
k
,
s
⩾
0
. The structure of the method in 1D is identical to the consistent approximate upwind Petrov–Galerkin (CAU/PG) method [A.C. Galeão, E.G. Dutra do Carmo, A consistent approximate upwind Petrov–Galerkin method for the convection-dominated problems, Comput. Methods Appl. Mech. Engrg. 68 (1988) 83–95] except for the definitions of the stabilization parameters. Such a structure may also be attained via the finite-calculus (FIC) procedure [E. Oñate, Derivation of stabilized equations for numerical solution of advective–diffusive transport and fluid flow problems, Comput. Methods Appl. Mech. Engrg. 151 (1998) 233–265; E. Oñate, J. Miquel, G. Hauke, Stabilized formulation for the advection–diffusion–absorption equation using finite-calculus and linear finite elements, Comput. Methods Appl. Mech. Engrg. 195 (2006) 3926–3946] by an appropriate definition of the characteristic length. The prefix ‘high-resolution’ is used here in the sense popularized by Harten, i.e. second order accuracy for smooth/regular regimes and good shock-capturing in nonregular regimes. The design procedure embarks on the problem of circumventing the Gibbs phenomenon observed in
L
2-projections. Next we study the conditions on the stabilization parameters to circumvent the global oscillations due to the convective term. A conjuncture of the two results is made to deal with the problem at hand that is usually plagued by Gibbs, global and dispersive oscillations in the numerical solution. It is shown that the method indeed reproduces stabilized high-resolution numerical solutions for a wide range of values of
u
,
k
,
s
and
f
. Finally, some remarks are made on the extension of the HRPG method to multidimensions.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2009.10.009</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2010-01, Vol.199 (9), p.525-546 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_miscellaneous_743229031 |
source | Elsevier ScienceDirect Journals |
subjects | Convection–diffusion–reaction Finite element Petrov–Galerkin Stabilized high-resolution methods |
title | A high-resolution Petrov–Galerkin method for the 1D convection–diffusion–reaction problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high-resolution%20Petrov%E2%80%93Galerkin%20method%20for%20the%201D%20convection%E2%80%93diffusion%E2%80%93reaction%20problem&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Nadukandi,%20Prashanth&rft.date=2010-01-01&rft.volume=199&rft.issue=9&rft.spage=525&rft.epage=546&rft.pages=525-546&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2009.10.009&rft_dat=%3Cproquest_cross%3E743229031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743229031&rft_id=info:pmid/&rft_els_id=S0045782509003545&rfr_iscdi=true |