A high-resolution Petrov–Galerkin method for the 1D convection–diffusion–reaction problem

We present the design of a high-resolution Petrov–Galerkin (HRPG) method using linear finite elements for the problem defined by the residual R ( ϕ ) ≔ ∂ ϕ ∂ t + u ∂ ϕ ∂ x - k ∂ 2 ϕ ∂ x 2 + s ϕ - f where k , s ⩾ 0 . The structure of the method in 1D is identical to the consistent approximate upwind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2010-01, Vol.199 (9), p.525-546
Hauptverfasser: Nadukandi, Prashanth, Oñate, Eugenio, Garcia, Julio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 546
container_issue 9
container_start_page 525
container_title Computer methods in applied mechanics and engineering
container_volume 199
creator Nadukandi, Prashanth
Oñate, Eugenio
Garcia, Julio
description We present the design of a high-resolution Petrov–Galerkin (HRPG) method using linear finite elements for the problem defined by the residual R ( ϕ ) ≔ ∂ ϕ ∂ t + u ∂ ϕ ∂ x - k ∂ 2 ϕ ∂ x 2 + s ϕ - f where k , s ⩾ 0 . The structure of the method in 1D is identical to the consistent approximate upwind Petrov–Galerkin (CAU/PG) method [A.C. Galeão, E.G. Dutra do Carmo, A consistent approximate upwind Petrov–Galerkin method for the convection-dominated problems, Comput. Methods Appl. Mech. Engrg. 68 (1988) 83–95] except for the definitions of the stabilization parameters. Such a structure may also be attained via the finite-calculus (FIC) procedure [E. Oñate, Derivation of stabilized equations for numerical solution of advective–diffusive transport and fluid flow problems, Comput. Methods Appl. Mech. Engrg. 151 (1998) 233–265; E. Oñate, J. Miquel, G. Hauke, Stabilized formulation for the advection–diffusion–absorption equation using finite-calculus and linear finite elements, Comput. Methods Appl. Mech. Engrg. 195 (2006) 3926–3946] by an appropriate definition of the characteristic length. The prefix ‘high-resolution’ is used here in the sense popularized by Harten, i.e. second order accuracy for smooth/regular regimes and good shock-capturing in nonregular regimes. The design procedure embarks on the problem of circumventing the Gibbs phenomenon observed in L 2-projections. Next we study the conditions on the stabilization parameters to circumvent the global oscillations due to the convective term. A conjuncture of the two results is made to deal with the problem at hand that is usually plagued by Gibbs, global and dispersive oscillations in the numerical solution. It is shown that the method indeed reproduces stabilized high-resolution numerical solutions for a wide range of values of u , k , s and f . Finally, some remarks are made on the extension of the HRPG method to multidimensions.
doi_str_mv 10.1016/j.cma.2009.10.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743229031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782509003545</els_id><sourcerecordid>743229031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-ff71fb5280021a55693f41f5779f55ee58ad37133416ef0947e7c9049696c3b3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIHcMuNU4IfcRyLU1WgICHBoXcrddbEJYmLnVTixj_wh3wJDuXMXmZ3NLOrHYQuCc4IJsX1NtNdlVGMZZyzCEdoRkohU0pYeYxmGOc8FSXlp-gshC2OVRI6Q2qRNPa1ST0E146DdX3yAoN3--_Pr1XVgn-zfdLB0Lg6Mc4nQwMJuU206_egJ3nU1daYMRx6D9Uvney827TQnaMTU7UBLv5wjtb3d-vlQ_r0vHpcLp5SzagcUmMEMRtOS4wpqTgvJDM5MVwIaTgH4GVVM0EYy0kBBstcgNAS57KQhWYbNkdXh7Xx7PsIYVCdDRraturBjUGJnFEqMSNRSQ5K7V0IHozaedtV_kMRrKYo1VbFKNUU5URFiJ6bgwfiB3sLXgVtoddQWx9TULWz_7h_AA53fxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743229031</pqid></control><display><type>article</type><title>A high-resolution Petrov–Galerkin method for the 1D convection–diffusion–reaction problem</title><source>Elsevier ScienceDirect Journals</source><creator>Nadukandi, Prashanth ; Oñate, Eugenio ; Garcia, Julio</creator><creatorcontrib>Nadukandi, Prashanth ; Oñate, Eugenio ; Garcia, Julio</creatorcontrib><description>We present the design of a high-resolution Petrov–Galerkin (HRPG) method using linear finite elements for the problem defined by the residual R ( ϕ ) ≔ ∂ ϕ ∂ t + u ∂ ϕ ∂ x - k ∂ 2 ϕ ∂ x 2 + s ϕ - f where k , s ⩾ 0 . The structure of the method in 1D is identical to the consistent approximate upwind Petrov–Galerkin (CAU/PG) method [A.C. Galeão, E.G. Dutra do Carmo, A consistent approximate upwind Petrov–Galerkin method for the convection-dominated problems, Comput. Methods Appl. Mech. Engrg. 68 (1988) 83–95] except for the definitions of the stabilization parameters. Such a structure may also be attained via the finite-calculus (FIC) procedure [E. Oñate, Derivation of stabilized equations for numerical solution of advective–diffusive transport and fluid flow problems, Comput. Methods Appl. Mech. Engrg. 151 (1998) 233–265; E. Oñate, J. Miquel, G. Hauke, Stabilized formulation for the advection–diffusion–absorption equation using finite-calculus and linear finite elements, Comput. Methods Appl. Mech. Engrg. 195 (2006) 3926–3946] by an appropriate definition of the characteristic length. The prefix ‘high-resolution’ is used here in the sense popularized by Harten, i.e. second order accuracy for smooth/regular regimes and good shock-capturing in nonregular regimes. The design procedure embarks on the problem of circumventing the Gibbs phenomenon observed in L 2-projections. Next we study the conditions on the stabilization parameters to circumvent the global oscillations due to the convective term. A conjuncture of the two results is made to deal with the problem at hand that is usually plagued by Gibbs, global and dispersive oscillations in the numerical solution. It is shown that the method indeed reproduces stabilized high-resolution numerical solutions for a wide range of values of u , k , s and f . Finally, some remarks are made on the extension of the HRPG method to multidimensions.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2009.10.009</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Convection–diffusion–reaction ; Finite element ; Petrov–Galerkin ; Stabilized high-resolution methods</subject><ispartof>Computer methods in applied mechanics and engineering, 2010-01, Vol.199 (9), p.525-546</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-ff71fb5280021a55693f41f5779f55ee58ad37133416ef0947e7c9049696c3b3</citedby><cites>FETCH-LOGICAL-c329t-ff71fb5280021a55693f41f5779f55ee58ad37133416ef0947e7c9049696c3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2009.10.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Nadukandi, Prashanth</creatorcontrib><creatorcontrib>Oñate, Eugenio</creatorcontrib><creatorcontrib>Garcia, Julio</creatorcontrib><title>A high-resolution Petrov–Galerkin method for the 1D convection–diffusion–reaction problem</title><title>Computer methods in applied mechanics and engineering</title><description>We present the design of a high-resolution Petrov–Galerkin (HRPG) method using linear finite elements for the problem defined by the residual R ( ϕ ) ≔ ∂ ϕ ∂ t + u ∂ ϕ ∂ x - k ∂ 2 ϕ ∂ x 2 + s ϕ - f where k , s ⩾ 0 . The structure of the method in 1D is identical to the consistent approximate upwind Petrov–Galerkin (CAU/PG) method [A.C. Galeão, E.G. Dutra do Carmo, A consistent approximate upwind Petrov–Galerkin method for the convection-dominated problems, Comput. Methods Appl. Mech. Engrg. 68 (1988) 83–95] except for the definitions of the stabilization parameters. Such a structure may also be attained via the finite-calculus (FIC) procedure [E. Oñate, Derivation of stabilized equations for numerical solution of advective–diffusive transport and fluid flow problems, Comput. Methods Appl. Mech. Engrg. 151 (1998) 233–265; E. Oñate, J. Miquel, G. Hauke, Stabilized formulation for the advection–diffusion–absorption equation using finite-calculus and linear finite elements, Comput. Methods Appl. Mech. Engrg. 195 (2006) 3926–3946] by an appropriate definition of the characteristic length. The prefix ‘high-resolution’ is used here in the sense popularized by Harten, i.e. second order accuracy for smooth/regular regimes and good shock-capturing in nonregular regimes. The design procedure embarks on the problem of circumventing the Gibbs phenomenon observed in L 2-projections. Next we study the conditions on the stabilization parameters to circumvent the global oscillations due to the convective term. A conjuncture of the two results is made to deal with the problem at hand that is usually plagued by Gibbs, global and dispersive oscillations in the numerical solution. It is shown that the method indeed reproduces stabilized high-resolution numerical solutions for a wide range of values of u , k , s and f . Finally, some remarks are made on the extension of the HRPG method to multidimensions.</description><subject>Convection–diffusion–reaction</subject><subject>Finite element</subject><subject>Petrov–Galerkin</subject><subject>Stabilized high-resolution methods</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIHcMuNU4IfcRyLU1WgICHBoXcrddbEJYmLnVTixj_wh3wJDuXMXmZ3NLOrHYQuCc4IJsX1NtNdlVGMZZyzCEdoRkohU0pYeYxmGOc8FSXlp-gshC2OVRI6Q2qRNPa1ST0E146DdX3yAoN3--_Pr1XVgn-zfdLB0Lg6Mc4nQwMJuU206_egJ3nU1daYMRx6D9Uvney827TQnaMTU7UBLv5wjtb3d-vlQ_r0vHpcLp5SzagcUmMEMRtOS4wpqTgvJDM5MVwIaTgH4GVVM0EYy0kBBstcgNAS57KQhWYbNkdXh7Xx7PsIYVCdDRraturBjUGJnFEqMSNRSQ5K7V0IHozaedtV_kMRrKYo1VbFKNUU5URFiJ6bgwfiB3sLXgVtoddQWx9TULWz_7h_AA53fxU</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Nadukandi, Prashanth</creator><creator>Oñate, Eugenio</creator><creator>Garcia, Julio</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100101</creationdate><title>A high-resolution Petrov–Galerkin method for the 1D convection–diffusion–reaction problem</title><author>Nadukandi, Prashanth ; Oñate, Eugenio ; Garcia, Julio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-ff71fb5280021a55693f41f5779f55ee58ad37133416ef0947e7c9049696c3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Convection–diffusion–reaction</topic><topic>Finite element</topic><topic>Petrov–Galerkin</topic><topic>Stabilized high-resolution methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadukandi, Prashanth</creatorcontrib><creatorcontrib>Oñate, Eugenio</creatorcontrib><creatorcontrib>Garcia, Julio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadukandi, Prashanth</au><au>Oñate, Eugenio</au><au>Garcia, Julio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high-resolution Petrov–Galerkin method for the 1D convection–diffusion–reaction problem</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>199</volume><issue>9</issue><spage>525</spage><epage>546</epage><pages>525-546</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We present the design of a high-resolution Petrov–Galerkin (HRPG) method using linear finite elements for the problem defined by the residual R ( ϕ ) ≔ ∂ ϕ ∂ t + u ∂ ϕ ∂ x - k ∂ 2 ϕ ∂ x 2 + s ϕ - f where k , s ⩾ 0 . The structure of the method in 1D is identical to the consistent approximate upwind Petrov–Galerkin (CAU/PG) method [A.C. Galeão, E.G. Dutra do Carmo, A consistent approximate upwind Petrov–Galerkin method for the convection-dominated problems, Comput. Methods Appl. Mech. Engrg. 68 (1988) 83–95] except for the definitions of the stabilization parameters. Such a structure may also be attained via the finite-calculus (FIC) procedure [E. Oñate, Derivation of stabilized equations for numerical solution of advective–diffusive transport and fluid flow problems, Comput. Methods Appl. Mech. Engrg. 151 (1998) 233–265; E. Oñate, J. Miquel, G. Hauke, Stabilized formulation for the advection–diffusion–absorption equation using finite-calculus and linear finite elements, Comput. Methods Appl. Mech. Engrg. 195 (2006) 3926–3946] by an appropriate definition of the characteristic length. The prefix ‘high-resolution’ is used here in the sense popularized by Harten, i.e. second order accuracy for smooth/regular regimes and good shock-capturing in nonregular regimes. The design procedure embarks on the problem of circumventing the Gibbs phenomenon observed in L 2-projections. Next we study the conditions on the stabilization parameters to circumvent the global oscillations due to the convective term. A conjuncture of the two results is made to deal with the problem at hand that is usually plagued by Gibbs, global and dispersive oscillations in the numerical solution. It is shown that the method indeed reproduces stabilized high-resolution numerical solutions for a wide range of values of u , k , s and f . Finally, some remarks are made on the extension of the HRPG method to multidimensions.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2009.10.009</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2010-01, Vol.199 (9), p.525-546
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_743229031
source Elsevier ScienceDirect Journals
subjects Convection–diffusion–reaction
Finite element
Petrov–Galerkin
Stabilized high-resolution methods
title A high-resolution Petrov–Galerkin method for the 1D convection–diffusion–reaction problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high-resolution%20Petrov%E2%80%93Galerkin%20method%20for%20the%201D%20convection%E2%80%93diffusion%E2%80%93reaction%20problem&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Nadukandi,%20Prashanth&rft.date=2010-01-01&rft.volume=199&rft.issue=9&rft.spage=525&rft.epage=546&rft.pages=525-546&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2009.10.009&rft_dat=%3Cproquest_cross%3E743229031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743229031&rft_id=info:pmid/&rft_els_id=S0045782509003545&rfr_iscdi=true