Fatigue and Fretting Fatigue Behavior of Metallic Biomaterials
A fretting fatigue test method in a simulated body fluid is shown to evaluate fatigue properties of metallic materials which are used in the orthopaedics field. Next, fatigue/fretting fatigue behavior in a simulated body fluid is given for 316L stainless steel, Ti-6% Al-4% V alloy, pure Ti for indus...
Gespeichert in:
Veröffentlicht in: | Materials science forum 2010-01, Vol.638-642, p.618-623 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 623 |
---|---|
container_issue | |
container_start_page | 618 |
container_title | Materials science forum |
container_volume | 638-642 |
creator | Maruyama, Norio |
description | A fretting fatigue test method in a simulated body fluid is shown to evaluate fatigue properties of metallic materials which are used in the orthopaedics field. Next, fatigue/fretting fatigue behavior in a simulated body fluid is given for 316L stainless steel, Ti-6% Al-4% V alloy, pure Ti for industrial use and Co-Cr-Mo alloy. Finally, we discuss the relationship between the tensile strength and the fatigue strength/fretting fatigue strength of metallic biomaterials at 107 cycles in air and in a simulated body fluid. For all of the biomaterials tested, the fatigue strength at 107 cycles is similar in air and in a simulated body fluid. The fatigue strength is closely correlated to the tensile strength: The fatigue strength increases with increasing tensile strength. However, a correlation is not observed between the fretting fatigue strength at 107 cycles and the fatigue strength or the tensile strength. |
doi_str_mv | 10.4028/www.scientific.net/MSF.638-642.618 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743211111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743211111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-2a744f2aaba8ca8578c7b91ef666f7ce1d515bf2e6c7565ec66c7122f6368043</originalsourceid><addsrcrecordid>eNqVkE1LAzEQhoMoWKv_YW-CsNsku_noRbDVVaHFg72HNJ20KdvdmmQt_ntTqnh2Lu8wvDwwD0J3BBcVpnJ0OByKYBy00VlnihbiaP5eF7yUOa9owYk8QwPCOc3HgtFzNMCUsZxVgl-iqxC2GJdEEj5A97WObt1DpttVVnuI0bXr7Pc4gY3-dJ3POpvNIeqmcSabuG6nI3inm3CNLmwKuPnJIVrUT4vpSz57e36dPsxyU2IRc6pFVVmq9VJLoyUT0ojlmIDlnFthgKwYYUtLgRvBOAPD00IotbzkElflEN2esHvfffQQotq5YKBpdAtdH5SoSkqOk5qTU9P4LgQPVu2922n_pQhWR3UqqVN_6lRSp5I6ldSppE4ldQnyeIJEr9sQwWzUtut9mz78D-YbWgGByQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743211111</pqid></control><display><type>article</type><title>Fatigue and Fretting Fatigue Behavior of Metallic Biomaterials</title><source>Scientific.net Journals</source><creator>Maruyama, Norio</creator><creatorcontrib>Maruyama, Norio</creatorcontrib><description>A fretting fatigue test method in a simulated body fluid is shown to evaluate fatigue properties of metallic materials which are used in the orthopaedics field. Next, fatigue/fretting fatigue behavior in a simulated body fluid is given for 316L stainless steel, Ti-6% Al-4% V alloy, pure Ti for industrial use and Co-Cr-Mo alloy. Finally, we discuss the relationship between the tensile strength and the fatigue strength/fretting fatigue strength of metallic biomaterials at 107 cycles in air and in a simulated body fluid. For all of the biomaterials tested, the fatigue strength at 107 cycles is similar in air and in a simulated body fluid. The fatigue strength is closely correlated to the tensile strength: The fatigue strength increases with increasing tensile strength. However, a correlation is not observed between the fretting fatigue strength at 107 cycles and the fatigue strength or the tensile strength.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.638-642.618</identifier><language>eng</language><publisher>Trans Tech Publications Ltd</publisher><ispartof>Materials science forum, 2010-01, Vol.638-642, p.618-623</ispartof><rights>2010 Trans Tech Publications Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-2a744f2aaba8ca8578c7b91ef666f7ce1d515bf2e6c7565ec66c7122f6368043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/884?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Maruyama, Norio</creatorcontrib><title>Fatigue and Fretting Fatigue Behavior of Metallic Biomaterials</title><title>Materials science forum</title><description>A fretting fatigue test method in a simulated body fluid is shown to evaluate fatigue properties of metallic materials which are used in the orthopaedics field. Next, fatigue/fretting fatigue behavior in a simulated body fluid is given for 316L stainless steel, Ti-6% Al-4% V alloy, pure Ti for industrial use and Co-Cr-Mo alloy. Finally, we discuss the relationship between the tensile strength and the fatigue strength/fretting fatigue strength of metallic biomaterials at 107 cycles in air and in a simulated body fluid. For all of the biomaterials tested, the fatigue strength at 107 cycles is similar in air and in a simulated body fluid. The fatigue strength is closely correlated to the tensile strength: The fatigue strength increases with increasing tensile strength. However, a correlation is not observed between the fretting fatigue strength at 107 cycles and the fatigue strength or the tensile strength.</description><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqVkE1LAzEQhoMoWKv_YW-CsNsku_noRbDVVaHFg72HNJ20KdvdmmQt_ntTqnh2Lu8wvDwwD0J3BBcVpnJ0OByKYBy00VlnihbiaP5eF7yUOa9owYk8QwPCOc3HgtFzNMCUsZxVgl-iqxC2GJdEEj5A97WObt1DpttVVnuI0bXr7Pc4gY3-dJ3POpvNIeqmcSabuG6nI3inm3CNLmwKuPnJIVrUT4vpSz57e36dPsxyU2IRc6pFVVmq9VJLoyUT0ojlmIDlnFthgKwYYUtLgRvBOAPD00IotbzkElflEN2esHvfffQQotq5YKBpdAtdH5SoSkqOk5qTU9P4LgQPVu2922n_pQhWR3UqqVN_6lRSp5I6ldSppE4ldQnyeIJEr9sQwWzUtut9mz78D-YbWgGByQ</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Maruyama, Norio</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100101</creationdate><title>Fatigue and Fretting Fatigue Behavior of Metallic Biomaterials</title><author>Maruyama, Norio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-2a744f2aaba8ca8578c7b91ef666f7ce1d515bf2e6c7565ec66c7122f6368043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maruyama, Norio</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maruyama, Norio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue and Fretting Fatigue Behavior of Metallic Biomaterials</atitle><jtitle>Materials science forum</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>638-642</volume><spage>618</spage><epage>623</epage><pages>618-623</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>A fretting fatigue test method in a simulated body fluid is shown to evaluate fatigue properties of metallic materials which are used in the orthopaedics field. Next, fatigue/fretting fatigue behavior in a simulated body fluid is given for 316L stainless steel, Ti-6% Al-4% V alloy, pure Ti for industrial use and Co-Cr-Mo alloy. Finally, we discuss the relationship between the tensile strength and the fatigue strength/fretting fatigue strength of metallic biomaterials at 107 cycles in air and in a simulated body fluid. For all of the biomaterials tested, the fatigue strength at 107 cycles is similar in air and in a simulated body fluid. The fatigue strength is closely correlated to the tensile strength: The fatigue strength increases with increasing tensile strength. However, a correlation is not observed between the fretting fatigue strength at 107 cycles and the fatigue strength or the tensile strength.</abstract><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.638-642.618</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0255-5476 |
ispartof | Materials science forum, 2010-01, Vol.638-642, p.618-623 |
issn | 0255-5476 1662-9752 1662-9752 |
language | eng |
recordid | cdi_proquest_miscellaneous_743211111 |
source | Scientific.net Journals |
title | Fatigue and Fretting Fatigue Behavior of Metallic Biomaterials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20and%20Fretting%20Fatigue%20Behavior%20of%20Metallic%20Biomaterials&rft.jtitle=Materials%20science%20forum&rft.au=Maruyama,%20Norio&rft.date=2010-01-01&rft.volume=638-642&rft.spage=618&rft.epage=623&rft.pages=618-623&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.638-642.618&rft_dat=%3Cproquest_cross%3E743211111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743211111&rft_id=info:pmid/&rfr_iscdi=true |