Ferroelectricity in a one-dimensional organic quantum magnet
Measurements of the magnetic-field-dependent polarization of a one-dimensional organic quantum magnet suggest its ferroelectric behaviour is mediated by a spin–Peierls instability. Such behaviour could provide a promising new approach to the design of spin-driven ferroelectrics. In magnetically cont...
Gespeichert in:
Veröffentlicht in: | Nature physics 2010-03, Vol.6 (3), p.169-172 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 172 |
---|---|
container_issue | 3 |
container_start_page | 169 |
container_title | Nature physics |
container_volume | 6 |
creator | Kagawa, Fumitaka Horiuchi, Sachio Tokunaga, Masashi Fujioka, Jun Tokura, Yoshinori |
description | Measurements of the magnetic-field-dependent polarization of a one-dimensional organic quantum magnet suggest its ferroelectric behaviour is mediated by a spin–Peierls instability. Such behaviour could provide a promising new approach to the design of spin-driven ferroelectrics.
In magnetically controllable ferroelectrics
1
,
2
,
3
, electric polarization is induced by charge redistribution or lattice distortions that occur to minimize the energy associated with both the magnetic order and interaction of spins with an applied magnetic field. Conventional approaches to designing materials that exploit such spin-mediated behaviour have focused mainly on developing the cycloidal spin order
4
,
5
, and thereby producing ferroelectric behaviour through the so-called antisymmetric Dzyaloshinskii–Moriya interaction
6
,
7
,
8
. However, engineering such spin structures is challenging. Here we suggest a different approach. Direct measurements of magnetic-field-dependent variations in the polarization of the one-dimensional organic quantum magnet, tetrathiafulvalene-
p
-bromanil, suggest a spin–Peierls instability has an important role in its response. Our results imply that one-dimensional quantum magnets, such as organic charge-transfer complexes, could be promising candidates in the development of magnetically controllable ferroelectric materials. |
doi_str_mv | 10.1038/nphys1503 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743206353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1973898291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-dbcdb55e258d426913a2c7a1841321ffd7c65b69acd1e04ef5366ff15f7f02933</originalsourceid><addsrcrecordid>eNpl0E1Lw0AQBuBFFKwfB_9B8CIK0Z39SgJepFgVCl70HLab2bol2W13k0P_vSmVInqaOTy8w7yEXAG9B8rLB7_-2iaQlB-RCRRC5kyUcHzYC35KzlJaUSqYAj4hjzOMMWCLpo_OuH6bOZ_pLHjMG9ehTy543WYhLrV3JtsM2vdDl3V66bG_ICdWtwkvf-Y5-Zw9f0xf8_n7y9v0aZ4bwUSfNwvTLKREJstmPFsB18wUGkoBnIG1TWGUXKhKmwaQCrSSK2UtSFtYyirOz8nNPncdw2bA1NedSwbbVnsMQ6oLwRlVXO7k9R-5CkMcP0g1VEIpIVQ5ots9MjGkFNHW6-g6Hbc10HrXYn1ocbR3e5tG45cYfwX-w9_KLnPD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194664468</pqid></control><display><type>article</type><title>Ferroelectricity in a one-dimensional organic quantum magnet</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kagawa, Fumitaka ; Horiuchi, Sachio ; Tokunaga, Masashi ; Fujioka, Jun ; Tokura, Yoshinori</creator><creatorcontrib>Kagawa, Fumitaka ; Horiuchi, Sachio ; Tokunaga, Masashi ; Fujioka, Jun ; Tokura, Yoshinori</creatorcontrib><description>Measurements of the magnetic-field-dependent polarization of a one-dimensional organic quantum magnet suggest its ferroelectric behaviour is mediated by a spin–Peierls instability. Such behaviour could provide a promising new approach to the design of spin-driven ferroelectrics.
In magnetically controllable ferroelectrics
1
,
2
,
3
, electric polarization is induced by charge redistribution or lattice distortions that occur to minimize the energy associated with both the magnetic order and interaction of spins with an applied magnetic field. Conventional approaches to designing materials that exploit such spin-mediated behaviour have focused mainly on developing the cycloidal spin order
4
,
5
, and thereby producing ferroelectric behaviour through the so-called antisymmetric Dzyaloshinskii–Moriya interaction
6
,
7
,
8
. However, engineering such spin structures is challenging. Here we suggest a different approach. Direct measurements of magnetic-field-dependent variations in the polarization of the one-dimensional organic quantum magnet, tetrathiafulvalene-
p
-bromanil, suggest a spin–Peierls instability has an important role in its response. Our results imply that one-dimensional quantum magnets, such as organic charge-transfer complexes, could be promising candidates in the development of magnetically controllable ferroelectric materials.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys1503</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Ferroelectrics ; letter ; Magnetic fields ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Polarization ; Quantum physics ; Theoretical</subject><ispartof>Nature physics, 2010-03, Vol.6 (3), p.169-172</ispartof><rights>Springer Nature Limited 2010</rights><rights>Copyright Nature Publishing Group Mar 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-dbcdb55e258d426913a2c7a1841321ffd7c65b69acd1e04ef5366ff15f7f02933</citedby><cites>FETCH-LOGICAL-c424t-dbcdb55e258d426913a2c7a1841321ffd7c65b69acd1e04ef5366ff15f7f02933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys1503$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys1503$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kagawa, Fumitaka</creatorcontrib><creatorcontrib>Horiuchi, Sachio</creatorcontrib><creatorcontrib>Tokunaga, Masashi</creatorcontrib><creatorcontrib>Fujioka, Jun</creatorcontrib><creatorcontrib>Tokura, Yoshinori</creatorcontrib><title>Ferroelectricity in a one-dimensional organic quantum magnet</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Measurements of the magnetic-field-dependent polarization of a one-dimensional organic quantum magnet suggest its ferroelectric behaviour is mediated by a spin–Peierls instability. Such behaviour could provide a promising new approach to the design of spin-driven ferroelectrics.
In magnetically controllable ferroelectrics
1
,
2
,
3
, electric polarization is induced by charge redistribution or lattice distortions that occur to minimize the energy associated with both the magnetic order and interaction of spins with an applied magnetic field. Conventional approaches to designing materials that exploit such spin-mediated behaviour have focused mainly on developing the cycloidal spin order
4
,
5
, and thereby producing ferroelectric behaviour through the so-called antisymmetric Dzyaloshinskii–Moriya interaction
6
,
7
,
8
. However, engineering such spin structures is challenging. Here we suggest a different approach. Direct measurements of magnetic-field-dependent variations in the polarization of the one-dimensional organic quantum magnet, tetrathiafulvalene-
p
-bromanil, suggest a spin–Peierls instability has an important role in its response. Our results imply that one-dimensional quantum magnets, such as organic charge-transfer complexes, could be promising candidates in the development of magnetically controllable ferroelectric materials.</description><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Ferroelectrics</subject><subject>letter</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polarization</subject><subject>Quantum physics</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0E1Lw0AQBuBFFKwfB_9B8CIK0Z39SgJepFgVCl70HLab2bol2W13k0P_vSmVInqaOTy8w7yEXAG9B8rLB7_-2iaQlB-RCRRC5kyUcHzYC35KzlJaUSqYAj4hjzOMMWCLpo_OuH6bOZ_pLHjMG9ehTy543WYhLrV3JtsM2vdDl3V66bG_ICdWtwkvf-Y5-Zw9f0xf8_n7y9v0aZ4bwUSfNwvTLKREJstmPFsB18wUGkoBnIG1TWGUXKhKmwaQCrSSK2UtSFtYyirOz8nNPncdw2bA1NedSwbbVnsMQ6oLwRlVXO7k9R-5CkMcP0g1VEIpIVQ5ots9MjGkFNHW6-g6Hbc10HrXYn1ocbR3e5tG45cYfwX-w9_KLnPD</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Kagawa, Fumitaka</creator><creator>Horiuchi, Sachio</creator><creator>Tokunaga, Masashi</creator><creator>Fujioka, Jun</creator><creator>Tokura, Yoshinori</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20100301</creationdate><title>Ferroelectricity in a one-dimensional organic quantum magnet</title><author>Kagawa, Fumitaka ; Horiuchi, Sachio ; Tokunaga, Masashi ; Fujioka, Jun ; Tokura, Yoshinori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-dbcdb55e258d426913a2c7a1841321ffd7c65b69acd1e04ef5366ff15f7f02933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Ferroelectrics</topic><topic>letter</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polarization</topic><topic>Quantum physics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kagawa, Fumitaka</creatorcontrib><creatorcontrib>Horiuchi, Sachio</creatorcontrib><creatorcontrib>Tokunaga, Masashi</creatorcontrib><creatorcontrib>Fujioka, Jun</creatorcontrib><creatorcontrib>Tokura, Yoshinori</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kagawa, Fumitaka</au><au>Horiuchi, Sachio</au><au>Tokunaga, Masashi</au><au>Fujioka, Jun</au><au>Tokura, Yoshinori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferroelectricity in a one-dimensional organic quantum magnet</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2010-03-01</date><risdate>2010</risdate><volume>6</volume><issue>3</issue><spage>169</spage><epage>172</epage><pages>169-172</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Measurements of the magnetic-field-dependent polarization of a one-dimensional organic quantum magnet suggest its ferroelectric behaviour is mediated by a spin–Peierls instability. Such behaviour could provide a promising new approach to the design of spin-driven ferroelectrics.
In magnetically controllable ferroelectrics
1
,
2
,
3
, electric polarization is induced by charge redistribution or lattice distortions that occur to minimize the energy associated with both the magnetic order and interaction of spins with an applied magnetic field. Conventional approaches to designing materials that exploit such spin-mediated behaviour have focused mainly on developing the cycloidal spin order
4
,
5
, and thereby producing ferroelectric behaviour through the so-called antisymmetric Dzyaloshinskii–Moriya interaction
6
,
7
,
8
. However, engineering such spin structures is challenging. Here we suggest a different approach. Direct measurements of magnetic-field-dependent variations in the polarization of the one-dimensional organic quantum magnet, tetrathiafulvalene-
p
-bromanil, suggest a spin–Peierls instability has an important role in its response. Our results imply that one-dimensional quantum magnets, such as organic charge-transfer complexes, could be promising candidates in the development of magnetically controllable ferroelectric materials.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys1503</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2010-03, Vol.6 (3), p.169-172 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_miscellaneous_743206353 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics Ferroelectrics letter Magnetic fields Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Physics and Astronomy Polarization Quantum physics Theoretical |
title | Ferroelectricity in a one-dimensional organic quantum magnet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A12%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferroelectricity%20in%20a%20one-dimensional%20organic%20quantum%20magnet&rft.jtitle=Nature%20physics&rft.au=Kagawa,%20Fumitaka&rft.date=2010-03-01&rft.volume=6&rft.issue=3&rft.spage=169&rft.epage=172&rft.pages=169-172&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys1503&rft_dat=%3Cproquest_cross%3E1973898291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194664468&rft_id=info:pmid/&rfr_iscdi=true |