Ferroelectricity in a one-dimensional organic quantum magnet

Measurements of the magnetic-field-dependent polarization of a one-dimensional organic quantum magnet suggest its ferroelectric behaviour is mediated by a spin–Peierls instability. Such behaviour could provide a promising new approach to the design of spin-driven ferroelectrics. In magnetically cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2010-03, Vol.6 (3), p.169-172
Hauptverfasser: Kagawa, Fumitaka, Horiuchi, Sachio, Tokunaga, Masashi, Fujioka, Jun, Tokura, Yoshinori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 172
container_issue 3
container_start_page 169
container_title Nature physics
container_volume 6
creator Kagawa, Fumitaka
Horiuchi, Sachio
Tokunaga, Masashi
Fujioka, Jun
Tokura, Yoshinori
description Measurements of the magnetic-field-dependent polarization of a one-dimensional organic quantum magnet suggest its ferroelectric behaviour is mediated by a spin–Peierls instability. Such behaviour could provide a promising new approach to the design of spin-driven ferroelectrics. In magnetically controllable ferroelectrics 1 , 2 , 3 , electric polarization is induced by charge redistribution or lattice distortions that occur to minimize the energy associated with both the magnetic order and interaction of spins with an applied magnetic field. Conventional approaches to designing materials that exploit such spin-mediated behaviour have focused mainly on developing the cycloidal spin order 4 , 5 , and thereby producing ferroelectric behaviour through the so-called antisymmetric Dzyaloshinskii–Moriya interaction 6 , 7 , 8 . However, engineering such spin structures is challenging. Here we suggest a different approach. Direct measurements of magnetic-field-dependent variations in the polarization of the one-dimensional organic quantum magnet, tetrathiafulvalene- p -bromanil, suggest a spin–Peierls instability has an important role in its response. Our results imply that one-dimensional quantum magnets, such as organic charge-transfer complexes, could be promising candidates in the development of magnetically controllable ferroelectric materials.
doi_str_mv 10.1038/nphys1503
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743206353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1973898291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-dbcdb55e258d426913a2c7a1841321ffd7c65b69acd1e04ef5366ff15f7f02933</originalsourceid><addsrcrecordid>eNpl0E1Lw0AQBuBFFKwfB_9B8CIK0Z39SgJepFgVCl70HLab2bol2W13k0P_vSmVInqaOTy8w7yEXAG9B8rLB7_-2iaQlB-RCRRC5kyUcHzYC35KzlJaUSqYAj4hjzOMMWCLpo_OuH6bOZ_pLHjMG9ehTy543WYhLrV3JtsM2vdDl3V66bG_ICdWtwkvf-Y5-Zw9f0xf8_n7y9v0aZ4bwUSfNwvTLKREJstmPFsB18wUGkoBnIG1TWGUXKhKmwaQCrSSK2UtSFtYyirOz8nNPncdw2bA1NedSwbbVnsMQ6oLwRlVXO7k9R-5CkMcP0g1VEIpIVQ5ots9MjGkFNHW6-g6Hbc10HrXYn1ocbR3e5tG45cYfwX-w9_KLnPD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194664468</pqid></control><display><type>article</type><title>Ferroelectricity in a one-dimensional organic quantum magnet</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kagawa, Fumitaka ; Horiuchi, Sachio ; Tokunaga, Masashi ; Fujioka, Jun ; Tokura, Yoshinori</creator><creatorcontrib>Kagawa, Fumitaka ; Horiuchi, Sachio ; Tokunaga, Masashi ; Fujioka, Jun ; Tokura, Yoshinori</creatorcontrib><description>Measurements of the magnetic-field-dependent polarization of a one-dimensional organic quantum magnet suggest its ferroelectric behaviour is mediated by a spin–Peierls instability. Such behaviour could provide a promising new approach to the design of spin-driven ferroelectrics. In magnetically controllable ferroelectrics 1 , 2 , 3 , electric polarization is induced by charge redistribution or lattice distortions that occur to minimize the energy associated with both the magnetic order and interaction of spins with an applied magnetic field. Conventional approaches to designing materials that exploit such spin-mediated behaviour have focused mainly on developing the cycloidal spin order 4 , 5 , and thereby producing ferroelectric behaviour through the so-called antisymmetric Dzyaloshinskii–Moriya interaction 6 , 7 , 8 . However, engineering such spin structures is challenging. Here we suggest a different approach. Direct measurements of magnetic-field-dependent variations in the polarization of the one-dimensional organic quantum magnet, tetrathiafulvalene- p -bromanil, suggest a spin–Peierls instability has an important role in its response. Our results imply that one-dimensional quantum magnets, such as organic charge-transfer complexes, could be promising candidates in the development of magnetically controllable ferroelectric materials.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys1503</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Ferroelectrics ; letter ; Magnetic fields ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Polarization ; Quantum physics ; Theoretical</subject><ispartof>Nature physics, 2010-03, Vol.6 (3), p.169-172</ispartof><rights>Springer Nature Limited 2010</rights><rights>Copyright Nature Publishing Group Mar 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-dbcdb55e258d426913a2c7a1841321ffd7c65b69acd1e04ef5366ff15f7f02933</citedby><cites>FETCH-LOGICAL-c424t-dbcdb55e258d426913a2c7a1841321ffd7c65b69acd1e04ef5366ff15f7f02933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys1503$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys1503$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kagawa, Fumitaka</creatorcontrib><creatorcontrib>Horiuchi, Sachio</creatorcontrib><creatorcontrib>Tokunaga, Masashi</creatorcontrib><creatorcontrib>Fujioka, Jun</creatorcontrib><creatorcontrib>Tokura, Yoshinori</creatorcontrib><title>Ferroelectricity in a one-dimensional organic quantum magnet</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Measurements of the magnetic-field-dependent polarization of a one-dimensional organic quantum magnet suggest its ferroelectric behaviour is mediated by a spin–Peierls instability. Such behaviour could provide a promising new approach to the design of spin-driven ferroelectrics. In magnetically controllable ferroelectrics 1 , 2 , 3 , electric polarization is induced by charge redistribution or lattice distortions that occur to minimize the energy associated with both the magnetic order and interaction of spins with an applied magnetic field. Conventional approaches to designing materials that exploit such spin-mediated behaviour have focused mainly on developing the cycloidal spin order 4 , 5 , and thereby producing ferroelectric behaviour through the so-called antisymmetric Dzyaloshinskii–Moriya interaction 6 , 7 , 8 . However, engineering such spin structures is challenging. Here we suggest a different approach. Direct measurements of magnetic-field-dependent variations in the polarization of the one-dimensional organic quantum magnet, tetrathiafulvalene- p -bromanil, suggest a spin–Peierls instability has an important role in its response. Our results imply that one-dimensional quantum magnets, such as organic charge-transfer complexes, could be promising candidates in the development of magnetically controllable ferroelectric materials.</description><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Ferroelectrics</subject><subject>letter</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polarization</subject><subject>Quantum physics</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0E1Lw0AQBuBFFKwfB_9B8CIK0Z39SgJepFgVCl70HLab2bol2W13k0P_vSmVInqaOTy8w7yEXAG9B8rLB7_-2iaQlB-RCRRC5kyUcHzYC35KzlJaUSqYAj4hjzOMMWCLpo_OuH6bOZ_pLHjMG9ehTy543WYhLrV3JtsM2vdDl3V66bG_ICdWtwkvf-Y5-Zw9f0xf8_n7y9v0aZ4bwUSfNwvTLKREJstmPFsB18wUGkoBnIG1TWGUXKhKmwaQCrSSK2UtSFtYyirOz8nNPncdw2bA1NedSwbbVnsMQ6oLwRlVXO7k9R-5CkMcP0g1VEIpIVQ5ots9MjGkFNHW6-g6Hbc10HrXYn1ocbR3e5tG45cYfwX-w9_KLnPD</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Kagawa, Fumitaka</creator><creator>Horiuchi, Sachio</creator><creator>Tokunaga, Masashi</creator><creator>Fujioka, Jun</creator><creator>Tokura, Yoshinori</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20100301</creationdate><title>Ferroelectricity in a one-dimensional organic quantum magnet</title><author>Kagawa, Fumitaka ; Horiuchi, Sachio ; Tokunaga, Masashi ; Fujioka, Jun ; Tokura, Yoshinori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-dbcdb55e258d426913a2c7a1841321ffd7c65b69acd1e04ef5366ff15f7f02933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Ferroelectrics</topic><topic>letter</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polarization</topic><topic>Quantum physics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kagawa, Fumitaka</creatorcontrib><creatorcontrib>Horiuchi, Sachio</creatorcontrib><creatorcontrib>Tokunaga, Masashi</creatorcontrib><creatorcontrib>Fujioka, Jun</creatorcontrib><creatorcontrib>Tokura, Yoshinori</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kagawa, Fumitaka</au><au>Horiuchi, Sachio</au><au>Tokunaga, Masashi</au><au>Fujioka, Jun</au><au>Tokura, Yoshinori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferroelectricity in a one-dimensional organic quantum magnet</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2010-03-01</date><risdate>2010</risdate><volume>6</volume><issue>3</issue><spage>169</spage><epage>172</epage><pages>169-172</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Measurements of the magnetic-field-dependent polarization of a one-dimensional organic quantum magnet suggest its ferroelectric behaviour is mediated by a spin–Peierls instability. Such behaviour could provide a promising new approach to the design of spin-driven ferroelectrics. In magnetically controllable ferroelectrics 1 , 2 , 3 , electric polarization is induced by charge redistribution or lattice distortions that occur to minimize the energy associated with both the magnetic order and interaction of spins with an applied magnetic field. Conventional approaches to designing materials that exploit such spin-mediated behaviour have focused mainly on developing the cycloidal spin order 4 , 5 , and thereby producing ferroelectric behaviour through the so-called antisymmetric Dzyaloshinskii–Moriya interaction 6 , 7 , 8 . However, engineering such spin structures is challenging. Here we suggest a different approach. Direct measurements of magnetic-field-dependent variations in the polarization of the one-dimensional organic quantum magnet, tetrathiafulvalene- p -bromanil, suggest a spin–Peierls instability has an important role in its response. Our results imply that one-dimensional quantum magnets, such as organic charge-transfer complexes, could be promising candidates in the development of magnetically controllable ferroelectric materials.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys1503</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2010-03, Vol.6 (3), p.169-172
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_miscellaneous_743206353
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Ferroelectrics
letter
Magnetic fields
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Polarization
Quantum physics
Theoretical
title Ferroelectricity in a one-dimensional organic quantum magnet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A12%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferroelectricity%20in%20a%20one-dimensional%20organic%20quantum%20magnet&rft.jtitle=Nature%20physics&rft.au=Kagawa,%20Fumitaka&rft.date=2010-03-01&rft.volume=6&rft.issue=3&rft.spage=169&rft.epage=172&rft.pages=169-172&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys1503&rft_dat=%3Cproquest_cross%3E1973898291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194664468&rft_id=info:pmid/&rfr_iscdi=true