A family of pseudo-Anosov maps

We study a family of area-preserving maps of the 2-torus and show that they are pseudo-Anosov. We present a method to construct finite Markov partitions for this family which utilizes their common symmetries. Through these partitions we show explicitly that each map is a tower over a first return ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2009-07, Vol.22 (7), p.1743-1760
Hauptverfasser: Demers, Mark F, Wojtkowski, Maciej P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1760
container_issue 7
container_start_page 1743
container_title Nonlinearity
container_volume 22
creator Demers, Mark F
Wojtkowski, Maciej P
description We study a family of area-preserving maps of the 2-torus and show that they are pseudo-Anosov. We present a method to construct finite Markov partitions for this family which utilizes their common symmetries. Through these partitions we show explicitly that each map is a tower over a first return map, intimately linked to a toral automorphism. This enables us to calculate directly some dimensional characteristics of the dynamics.
doi_str_mv 10.1088/0951-7715/22/7/013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743203258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743203258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-c844aace418148eba85402ceb572523e649e3a16640df66d9b4d3431af353aaa3</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgCtbpP-BBehMPsXl5SZodx_AXDLzoOby1CVTapTabsP_ejsouA0_v8vl-4fsYuwXxCMLaQsw18LIEXUhZlIUAPGMZoAFutFLnLDuCS3aV0pcQAFZixu4WeaCuafd5DHmf_K6OfLGJKf7kHfXpml0EapO_-bsz9vn89LF85av3l7flYsUr1LDllVWKqPIKLCjr12S1ErLya11KLdEbNfdIYIwSdTCmnq9VjQqBAmokIpyx-6m3H-L3zqet65pU-baljY-75EqFUqDUdpRyktUQUxp8cP3QdDTsHQh3-IU7THWHqU5KV7rxF2PoYQo1sT_6U-f6OoyWn9p_un8BK9ppkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743203258</pqid></control><display><type>article</type><title>A family of pseudo-Anosov maps</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Demers, Mark F ; Wojtkowski, Maciej P</creator><creatorcontrib>Demers, Mark F ; Wojtkowski, Maciej P</creatorcontrib><description>We study a family of area-preserving maps of the 2-torus and show that they are pseudo-Anosov. We present a method to construct finite Markov partitions for this family which utilizes their common symmetries. Through these partitions we show explicitly that each map is a tower over a first return map, intimately linked to a toral automorphism. This enables us to calculate directly some dimensional characteristics of the dynamics.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/0951-7715/22/7/013</identifier><language>eng</language><publisher>IOP Publishing</publisher><ispartof>Nonlinearity, 2009-07, Vol.22 (7), p.1743-1760</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-c844aace418148eba85402ceb572523e649e3a16640df66d9b4d3431af353aaa3</citedby><cites>FETCH-LOGICAL-c351t-c844aace418148eba85402ceb572523e649e3a16640df66d9b4d3431af353aaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0951-7715/22/7/013/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53805,53885</link.rule.ids></links><search><creatorcontrib>Demers, Mark F</creatorcontrib><creatorcontrib>Wojtkowski, Maciej P</creatorcontrib><title>A family of pseudo-Anosov maps</title><title>Nonlinearity</title><description>We study a family of area-preserving maps of the 2-torus and show that they are pseudo-Anosov. We present a method to construct finite Markov partitions for this family which utilizes their common symmetries. Through these partitions we show explicitly that each map is a tower over a first return map, intimately linked to a toral automorphism. This enables us to calculate directly some dimensional characteristics of the dynamics.</description><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUB_AgCtbpP-BBehMPsXl5SZodx_AXDLzoOby1CVTapTabsP_ejsouA0_v8vl-4fsYuwXxCMLaQsw18LIEXUhZlIUAPGMZoAFutFLnLDuCS3aV0pcQAFZixu4WeaCuafd5DHmf_K6OfLGJKf7kHfXpml0EapO_-bsz9vn89LF85av3l7flYsUr1LDllVWKqPIKLCjr12S1ErLya11KLdEbNfdIYIwSdTCmnq9VjQqBAmokIpyx-6m3H-L3zqet65pU-baljY-75EqFUqDUdpRyktUQUxp8cP3QdDTsHQh3-IU7THWHqU5KV7rxF2PoYQo1sT_6U-f6OoyWn9p_un8BK9ppkg</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Demers, Mark F</creator><creator>Wojtkowski, Maciej P</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090701</creationdate><title>A family of pseudo-Anosov maps</title><author>Demers, Mark F ; Wojtkowski, Maciej P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-c844aace418148eba85402ceb572523e649e3a16640df66d9b4d3431af353aaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demers, Mark F</creatorcontrib><creatorcontrib>Wojtkowski, Maciej P</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demers, Mark F</au><au>Wojtkowski, Maciej P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A family of pseudo-Anosov maps</atitle><jtitle>Nonlinearity</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>22</volume><issue>7</issue><spage>1743</spage><epage>1760</epage><pages>1743-1760</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><abstract>We study a family of area-preserving maps of the 2-torus and show that they are pseudo-Anosov. We present a method to construct finite Markov partitions for this family which utilizes their common symmetries. Through these partitions we show explicitly that each map is a tower over a first return map, intimately linked to a toral automorphism. This enables us to calculate directly some dimensional characteristics of the dynamics.</abstract><pub>IOP Publishing</pub><doi>10.1088/0951-7715/22/7/013</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2009-07, Vol.22 (7), p.1743-1760
issn 0951-7715
1361-6544
language eng
recordid cdi_proquest_miscellaneous_743203258
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title A family of pseudo-Anosov maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20family%20of%20pseudo-Anosov%20maps&rft.jtitle=Nonlinearity&rft.au=Demers,%20Mark%20F&rft.date=2009-07-01&rft.volume=22&rft.issue=7&rft.spage=1743&rft.epage=1760&rft.pages=1743-1760&rft.issn=0951-7715&rft.eissn=1361-6544&rft_id=info:doi/10.1088/0951-7715/22/7/013&rft_dat=%3Cproquest_cross%3E743203258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743203258&rft_id=info:pmid/&rfr_iscdi=true