A Field Intercomparison Technique to Improve the Relative Accuracy of Longwave Radiation Measurements and an Evaluation of CASES-99 Pyrgeometer Data Quality
Techniques for improving the relative accuracy of longwave radiation measurements by a set of pyrgeometers [the Eppley Laboratory Precision Infrared Radiometer (Model PIR)] are presented using 10 PIRs from the 1999 Cooperative Atmosphere-Surface Exchange Study (CASES-99). The least squares-based opt...
Gespeichert in:
Veröffentlicht in: | Journal of atmospheric and oceanic technology 2003-03, Vol.20 (3), p.348-361 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 361 |
---|---|
container_issue | 3 |
container_start_page | 348 |
container_title | Journal of atmospheric and oceanic technology |
container_volume | 20 |
creator | Burns, S P Sun, J Delany, A C Semmer, S R |
description | Techniques for improving the relative accuracy of longwave radiation measurements by a set of pyrgeometers [the Eppley Laboratory Precision Infrared Radiometer (Model PIR)] are presented using 10 PIRs from the 1999 Cooperative Atmosphere-Surface Exchange Study (CASES-99). The least squares-based optimization technique uses a field intercomparison (i.e., a time period during which all the PIRs were upward looking and set up side by side) to determine a set of optimization coefficients for each PIR. For the 10 CASES-99 PIRs, the optimization technique improved the standard deviation of the difference of downwelling irradiance between the PIRs from + or -0.75 to + or -0.4 W m^sup -2^ (for nighttime data). In addition to presenting the optimixation method, various PIR data quality checks are outlined and applied to the PIR data. Based on these quality checks, the measured case and dome temperatures of the CASES-99 PIRs were all reasonable. Using the 10 CASES-99 PIRs, simple estimates of the average nighttime net radiative flux divergence within the layer between 2 and 48 m were determined and resulted in cooling rates over a range from 0 to -1.3[degrees]C h^sup -1^, depending on the assumptions made for the upwelling irradiance at 2 m. The effect of the coefficient optimization on the calculated net radiative flux divergence is explored. |
doi_str_mv | 10.1175/1520-0426(2003)020<0348:AFITTI>2.0.CO;2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743195163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21423350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-6a728e5e19db14836324d2b13b356bc5f20b4e42d2fddc89e13f9f6a3f09d9ad3</originalsourceid><addsrcrecordid>eNp9kU2P0zAQhiMEEmXhP1gc-DikOx7nowGEFIV2qVRU2C1ny7Enu1klcbGTRf0v_FgcFXHgwMGyx_N45FdPFF1yWHKep5c8RYghwewNAoi3gPABRLJ6V262h8P2Iy5hWe3f46No8Zd8HC0gF0UMaY5Po2fe3wMAFzxbRL9KtmmpM2w7jOS07Y_Ktd4O7ED6bmh_TMRGy7b90dmHcLwjdk2dGttQlFpPTukTsw3b2eH2pwqX18q0oR0GfCHlJ0c9DaNnajBhsfWD6qZzOzyqypv1TVwU7OvJ3ZLtKfyAfVKjYt8m1bXj6Xn0pFGdpxd_9ovo-2Z9qD7Hu_3Vtip3sRaQj3GmclxRSrwwNU9WIhOYGKy5qEWa1TptEOqEEjTYGKNXBXHRFE2mRAOFKZQRF9Hr89yQMiT2o-xbr6nr1EB28jJPBC9SnolAvvoviTxBIVII4Mt_wHs7uSGkkIgYAMizAF2dIe2s944aeXRtr9xJcpCzbDkrlLNCOcuWMFdBtjzLlihBVnuJ4jcIsaE5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222503076</pqid></control><display><type>article</type><title>A Field Intercomparison Technique to Improve the Relative Accuracy of Longwave Radiation Measurements and an Evaluation of CASES-99 Pyrgeometer Data Quality</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Burns, S P ; Sun, J ; Delany, A C ; Semmer, S R</creator><creatorcontrib>Burns, S P ; Sun, J ; Delany, A C ; Semmer, S R</creatorcontrib><description>Techniques for improving the relative accuracy of longwave radiation measurements by a set of pyrgeometers [the Eppley Laboratory Precision Infrared Radiometer (Model PIR)] are presented using 10 PIRs from the 1999 Cooperative Atmosphere-Surface Exchange Study (CASES-99). The least squares-based optimization technique uses a field intercomparison (i.e., a time period during which all the PIRs were upward looking and set up side by side) to determine a set of optimization coefficients for each PIR. For the 10 CASES-99 PIRs, the optimization technique improved the standard deviation of the difference of downwelling irradiance between the PIRs from + or -0.75 to + or -0.4 W m^sup -2^ (for nighttime data). In addition to presenting the optimixation method, various PIR data quality checks are outlined and applied to the PIR data. Based on these quality checks, the measured case and dome temperatures of the CASES-99 PIRs were all reasonable. Using the 10 CASES-99 PIRs, simple estimates of the average nighttime net radiative flux divergence within the layer between 2 and 48 m were determined and resulted in cooling rates over a range from 0 to -1.3[degrees]C h^sup -1^, depending on the assumptions made for the upwelling irradiance at 2 m. The effect of the coefficient optimization on the calculated net radiative flux divergence is explored.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/1520-0426(2003)020<0348:AFITTI>2.0.CO;2</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmosphere ; Calibration ; Radiation ; Radiation measurement ; Upwelling</subject><ispartof>Journal of atmospheric and oceanic technology, 2003-03, Vol.20 (3), p.348-361</ispartof><rights>Copyright American Meteorological Society Mar 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-6a728e5e19db14836324d2b13b356bc5f20b4e42d2fddc89e13f9f6a3f09d9ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Burns, S P</creatorcontrib><creatorcontrib>Sun, J</creatorcontrib><creatorcontrib>Delany, A C</creatorcontrib><creatorcontrib>Semmer, S R</creatorcontrib><title>A Field Intercomparison Technique to Improve the Relative Accuracy of Longwave Radiation Measurements and an Evaluation of CASES-99 Pyrgeometer Data Quality</title><title>Journal of atmospheric and oceanic technology</title><description>Techniques for improving the relative accuracy of longwave radiation measurements by a set of pyrgeometers [the Eppley Laboratory Precision Infrared Radiometer (Model PIR)] are presented using 10 PIRs from the 1999 Cooperative Atmosphere-Surface Exchange Study (CASES-99). The least squares-based optimization technique uses a field intercomparison (i.e., a time period during which all the PIRs were upward looking and set up side by side) to determine a set of optimization coefficients for each PIR. For the 10 CASES-99 PIRs, the optimization technique improved the standard deviation of the difference of downwelling irradiance between the PIRs from + or -0.75 to + or -0.4 W m^sup -2^ (for nighttime data). In addition to presenting the optimixation method, various PIR data quality checks are outlined and applied to the PIR data. Based on these quality checks, the measured case and dome temperatures of the CASES-99 PIRs were all reasonable. Using the 10 CASES-99 PIRs, simple estimates of the average nighttime net radiative flux divergence within the layer between 2 and 48 m were determined and resulted in cooling rates over a range from 0 to -1.3[degrees]C h^sup -1^, depending on the assumptions made for the upwelling irradiance at 2 m. The effect of the coefficient optimization on the calculated net radiative flux divergence is explored.</description><subject>Atmosphere</subject><subject>Calibration</subject><subject>Radiation</subject><subject>Radiation measurement</subject><subject>Upwelling</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU2P0zAQhiMEEmXhP1gc-DikOx7nowGEFIV2qVRU2C1ny7Enu1klcbGTRf0v_FgcFXHgwMGyx_N45FdPFF1yWHKep5c8RYghwewNAoi3gPABRLJ6V262h8P2Iy5hWe3f46No8Zd8HC0gF0UMaY5Po2fe3wMAFzxbRL9KtmmpM2w7jOS07Y_Ktd4O7ED6bmh_TMRGy7b90dmHcLwjdk2dGttQlFpPTukTsw3b2eH2pwqX18q0oR0GfCHlJ0c9DaNnajBhsfWD6qZzOzyqypv1TVwU7OvJ3ZLtKfyAfVKjYt8m1bXj6Xn0pFGdpxd_9ovo-2Z9qD7Hu_3Vtip3sRaQj3GmclxRSrwwNU9WIhOYGKy5qEWa1TptEOqEEjTYGKNXBXHRFE2mRAOFKZQRF9Hr89yQMiT2o-xbr6nr1EB28jJPBC9SnolAvvoviTxBIVII4Mt_wHs7uSGkkIgYAMizAF2dIe2s944aeXRtr9xJcpCzbDkrlLNCOcuWMFdBtjzLlihBVnuJ4jcIsaE5</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Burns, S P</creator><creator>Sun, J</creator><creator>Delany, A C</creator><creator>Semmer, S R</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>H95</scope></search><sort><creationdate>20030301</creationdate><title>A Field Intercomparison Technique to Improve the Relative Accuracy of Longwave Radiation Measurements and an Evaluation of CASES-99 Pyrgeometer Data Quality</title><author>Burns, S P ; Sun, J ; Delany, A C ; Semmer, S R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-6a728e5e19db14836324d2b13b356bc5f20b4e42d2fddc89e13f9f6a3f09d9ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Atmosphere</topic><topic>Calibration</topic><topic>Radiation</topic><topic>Radiation measurement</topic><topic>Upwelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burns, S P</creatorcontrib><creatorcontrib>Sun, J</creatorcontrib><creatorcontrib>Delany, A C</creatorcontrib><creatorcontrib>Semmer, S R</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burns, S P</au><au>Sun, J</au><au>Delany, A C</au><au>Semmer, S R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Field Intercomparison Technique to Improve the Relative Accuracy of Longwave Radiation Measurements and an Evaluation of CASES-99 Pyrgeometer Data Quality</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2003-03-01</date><risdate>2003</risdate><volume>20</volume><issue>3</issue><spage>348</spage><epage>361</epage><pages>348-361</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>Techniques for improving the relative accuracy of longwave radiation measurements by a set of pyrgeometers [the Eppley Laboratory Precision Infrared Radiometer (Model PIR)] are presented using 10 PIRs from the 1999 Cooperative Atmosphere-Surface Exchange Study (CASES-99). The least squares-based optimization technique uses a field intercomparison (i.e., a time period during which all the PIRs were upward looking and set up side by side) to determine a set of optimization coefficients for each PIR. For the 10 CASES-99 PIRs, the optimization technique improved the standard deviation of the difference of downwelling irradiance between the PIRs from + or -0.75 to + or -0.4 W m^sup -2^ (for nighttime data). In addition to presenting the optimixation method, various PIR data quality checks are outlined and applied to the PIR data. Based on these quality checks, the measured case and dome temperatures of the CASES-99 PIRs were all reasonable. Using the 10 CASES-99 PIRs, simple estimates of the average nighttime net radiative flux divergence within the layer between 2 and 48 m were determined and resulted in cooling rates over a range from 0 to -1.3[degrees]C h^sup -1^, depending on the assumptions made for the upwelling irradiance at 2 m. The effect of the coefficient optimization on the calculated net radiative flux divergence is explored.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0426(2003)020<0348:AFITTI>2.0.CO;2</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0739-0572 |
ispartof | Journal of atmospheric and oceanic technology, 2003-03, Vol.20 (3), p.348-361 |
issn | 0739-0572 1520-0426 |
language | eng |
recordid | cdi_proquest_miscellaneous_743195163 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Atmosphere Calibration Radiation Radiation measurement Upwelling |
title | A Field Intercomparison Technique to Improve the Relative Accuracy of Longwave Radiation Measurements and an Evaluation of CASES-99 Pyrgeometer Data Quality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A25%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Field%20Intercomparison%20Technique%20to%20Improve%20the%20Relative%20Accuracy%20of%20Longwave%20Radiation%20Measurements%20and%20an%20Evaluation%20of%20CASES-99%20Pyrgeometer%20Data%20Quality&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Burns,%20S%20P&rft.date=2003-03-01&rft.volume=20&rft.issue=3&rft.spage=348&rft.epage=361&rft.pages=348-361&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/1520-0426(2003)020%3C0348:AFITTI%3E2.0.CO;2&rft_dat=%3Cproquest_cross%3E21423350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222503076&rft_id=info:pmid/&rfr_iscdi=true |