Dynamic Instability in a DNA-Segregating Prokaryotic Actin Homolog
Dynamic instability-the switching of a two-state polymer between phases of steady elongation and rapid shortening-is essential to the cellular function of eukaryotic microtubules, especially during chromosome segregation. Since the discovery of dynamic instability 20 years ago, no other biological p...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2004-11, Vol.306 (5698), p.1021-1025 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1025 |
---|---|
container_issue | 5698 |
container_start_page | 1021 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 306 |
creator | Garner, Ethan C. Campbell, Christopher S. Mullins, R. Dyche |
description | Dynamic instability-the switching of a two-state polymer between phases of steady elongation and rapid shortening-is essential to the cellular function of eukaryotic microtubules, especially during chromosome segregation. Since the discovery of dynamic instability 20 years ago, no other biological polymer has been found to exhibit this behavior. Using total internal reflection fluorescence microscopy and fluorescence resonance energy transfer, we observe that the prokaryotic actin homolog ParM, whose assembly is required for the segregation of large, low-copy number plasmids, displays both dynamic instability and symmetrical, bidirectional polymerization. The dynamic instability of ParM is regulated by adenosine triphosphate (ATP) hydrolysis, and filaments are stabilized by a cap of ATP-bound monomers. ParM is not related to tubulin, so its dynamic instability must have arisen by convergent evolution driven by a set of common constraints on polymer-based segregation of DNA. |
doi_str_mv | 10.1126/science.1101313 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743191151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A125335660</galeid><jstor_id>3839433</jstor_id><sourcerecordid>A125335660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c782t-13e2471e635970472369958466431a177a02a751f45043f8045856bfa757e5a43</originalsourceid><addsrcrecordid>eNqN0s-LEzEUB_AgilurZy8ig6DiYXbzOzPHble7hbIVVr2GNPtmSJ0mazIF-9-bpYNLpUjJYch7nxeY5IvQa4LPCaHyIlkH3kLeYMIIe4JGBNeirClmT9EIYybLCitxhl6ktMY492r2HJ0RIWjFOR2hy6udNxtni7lPvVm5zvW7wvnCFFc3k_IW2git6Z1vi68x_DRxF_qMJzaXiuuwCV1oX6JnjekSvBq-Y_T9y-dv0-tysZzNp5NFaVVF-5IwoFwRkEzUCnNFmaxrUXEpOSOGKGUwNUqQhgvMWVNhLiohV02uKRCGszH6uD_3PoZfW0i93rhkoeuMh7BNWuVzakIEyfLDfyWpsKCEyQzf_QPXYRt9_gud-0Lxh2sdo3KPWtOBdr4JfTS2BQ_RdMFD43J5QqhgTEiJsz8_4vO6g3zRRwc-HQxk08PvvjXblPT89uZ0u_xxur2cnWyr2eLQlsesDV0HLej86NPlob_YextDShEafR_dJmdJE6wfYqyHGOshxnni7fAu29UG7h79kNsM3g_AJGu6JhpvXXp0ksqK5qyP0Zu9W6c-xL99VrGaM8b-AF_W-p0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213574101</pqid></control><display><type>article</type><title>Dynamic Instability in a DNA-Segregating Prokaryotic Actin Homolog</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Garner, Ethan C. ; Campbell, Christopher S. ; Mullins, R. Dyche</creator><creatorcontrib>Garner, Ethan C. ; Campbell, Christopher S. ; Mullins, R. Dyche</creatorcontrib><description>Dynamic instability-the switching of a two-state polymer between phases of steady elongation and rapid shortening-is essential to the cellular function of eukaryotic microtubules, especially during chromosome segregation. Since the discovery of dynamic instability 20 years ago, no other biological polymer has been found to exhibit this behavior. Using total internal reflection fluorescence microscopy and fluorescence resonance energy transfer, we observe that the prokaryotic actin homolog ParM, whose assembly is required for the segregation of large, low-copy number plasmids, displays both dynamic instability and symmetrical, bidirectional polymerization. The dynamic instability of ParM is regulated by adenosine triphosphate (ATP) hydrolysis, and filaments are stabilized by a cap of ATP-bound monomers. ParM is not related to tubulin, so its dynamic instability must have arisen by convergent evolution driven by a set of common constraints on polymer-based segregation of DNA.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1101313</identifier><identifier>PMID: 15528442</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Actin ; Actins ; Actins - chemistry ; Adenosine Triphosphate - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - physiology ; Bacterial Proteins - ultrastructure ; Bacteriology ; Biological and medical sciences ; Biopolymers - chemistry ; Cellular biology ; Deoxyribonucleic acid ; DNA ; DNA, Bacterial - metabolism ; Fluorescence ; Fluorescence Resonance Energy Transfer ; Fundamental and applied biological sciences. Psychology ; Genetic aspects ; Hydrolysis ; Kinetics ; Microbiology ; Microscopy ; Microscopy, Fluorescence ; Miscellaneous ; Monomers ; Mutagenesis ; Nucleation ; Numbers ; Observation ; Plasmids ; Polymerization ; Polymers ; Prokaryotes</subject><ispartof>Science (American Association for the Advancement of Science), 2004-11, Vol.306 (5698), p.1021-1025</ispartof><rights>Copyright 2004 American Association for the Advancement of Science</rights><rights>2005 INIST-CNRS</rights><rights>COPYRIGHT 2004 American Association for the Advancement of Science</rights><rights>COPYRIGHT 2004 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Nov 5, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c782t-13e2471e635970472369958466431a177a02a751f45043f8045856bfa757e5a43</citedby><cites>FETCH-LOGICAL-c782t-13e2471e635970472369958466431a177a02a751f45043f8045856bfa757e5a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3839433$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3839433$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27903,27904,57994,58227</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16268259$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15528442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garner, Ethan C.</creatorcontrib><creatorcontrib>Campbell, Christopher S.</creatorcontrib><creatorcontrib>Mullins, R. Dyche</creatorcontrib><title>Dynamic Instability in a DNA-Segregating Prokaryotic Actin Homolog</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Dynamic instability-the switching of a two-state polymer between phases of steady elongation and rapid shortening-is essential to the cellular function of eukaryotic microtubules, especially during chromosome segregation. Since the discovery of dynamic instability 20 years ago, no other biological polymer has been found to exhibit this behavior. Using total internal reflection fluorescence microscopy and fluorescence resonance energy transfer, we observe that the prokaryotic actin homolog ParM, whose assembly is required for the segregation of large, low-copy number plasmids, displays both dynamic instability and symmetrical, bidirectional polymerization. The dynamic instability of ParM is regulated by adenosine triphosphate (ATP) hydrolysis, and filaments are stabilized by a cap of ATP-bound monomers. ParM is not related to tubulin, so its dynamic instability must have arisen by convergent evolution driven by a set of common constraints on polymer-based segregation of DNA.</description><subject>Actin</subject><subject>Actins</subject><subject>Actins - chemistry</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - physiology</subject><subject>Bacterial Proteins - ultrastructure</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Biopolymers - chemistry</subject><subject>Cellular biology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Bacterial - metabolism</subject><subject>Fluorescence</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic aspects</subject><subject>Hydrolysis</subject><subject>Kinetics</subject><subject>Microbiology</subject><subject>Microscopy</subject><subject>Microscopy, Fluorescence</subject><subject>Miscellaneous</subject><subject>Monomers</subject><subject>Mutagenesis</subject><subject>Nucleation</subject><subject>Numbers</subject><subject>Observation</subject><subject>Plasmids</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Prokaryotes</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0s-LEzEUB_AgilurZy8ig6DiYXbzOzPHble7hbIVVr2GNPtmSJ0mazIF-9-bpYNLpUjJYch7nxeY5IvQa4LPCaHyIlkH3kLeYMIIe4JGBNeirClmT9EIYybLCitxhl6ktMY492r2HJ0RIWjFOR2hy6udNxtni7lPvVm5zvW7wvnCFFc3k_IW2git6Z1vi68x_DRxF_qMJzaXiuuwCV1oX6JnjekSvBq-Y_T9y-dv0-tysZzNp5NFaVVF-5IwoFwRkEzUCnNFmaxrUXEpOSOGKGUwNUqQhgvMWVNhLiohV02uKRCGszH6uD_3PoZfW0i93rhkoeuMh7BNWuVzakIEyfLDfyWpsKCEyQzf_QPXYRt9_gud-0Lxh2sdo3KPWtOBdr4JfTS2BQ_RdMFD43J5QqhgTEiJsz8_4vO6g3zRRwc-HQxk08PvvjXblPT89uZ0u_xxur2cnWyr2eLQlsesDV0HLej86NPlob_YextDShEafR_dJmdJE6wfYqyHGOshxnni7fAu29UG7h79kNsM3g_AJGu6JhpvXXp0ksqK5qyP0Zu9W6c-xL99VrGaM8b-AF_W-p0</recordid><startdate>20041105</startdate><enddate>20041105</enddate><creator>Garner, Ethan C.</creator><creator>Campbell, Christopher S.</creator><creator>Mullins, R. Dyche</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>0-V</scope><scope>3V.</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88B</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9-</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M0P</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope></search><sort><creationdate>20041105</creationdate><title>Dynamic Instability in a DNA-Segregating Prokaryotic Actin Homolog</title><author>Garner, Ethan C. ; Campbell, Christopher S. ; Mullins, R. Dyche</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c782t-13e2471e635970472369958466431a177a02a751f45043f8045856bfa757e5a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Actin</topic><topic>Actins</topic><topic>Actins - chemistry</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - physiology</topic><topic>Bacterial Proteins - ultrastructure</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Biopolymers - chemistry</topic><topic>Cellular biology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Bacterial - metabolism</topic><topic>Fluorescence</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic aspects</topic><topic>Hydrolysis</topic><topic>Kinetics</topic><topic>Microbiology</topic><topic>Microscopy</topic><topic>Microscopy, Fluorescence</topic><topic>Miscellaneous</topic><topic>Monomers</topic><topic>Mutagenesis</topic><topic>Nucleation</topic><topic>Numbers</topic><topic>Observation</topic><topic>Plasmids</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Prokaryotes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garner, Ethan C.</creatorcontrib><creatorcontrib>Campbell, Christopher S.</creatorcontrib><creatorcontrib>Mullins, R. Dyche</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agricultural Science Database</collection><collection>Education Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garner, Ethan C.</au><au>Campbell, Christopher S.</au><au>Mullins, R. Dyche</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Instability in a DNA-Segregating Prokaryotic Actin Homolog</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2004-11-05</date><risdate>2004</risdate><volume>306</volume><issue>5698</issue><spage>1021</spage><epage>1025</epage><pages>1021-1025</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Dynamic instability-the switching of a two-state polymer between phases of steady elongation and rapid shortening-is essential to the cellular function of eukaryotic microtubules, especially during chromosome segregation. Since the discovery of dynamic instability 20 years ago, no other biological polymer has been found to exhibit this behavior. Using total internal reflection fluorescence microscopy and fluorescence resonance energy transfer, we observe that the prokaryotic actin homolog ParM, whose assembly is required for the segregation of large, low-copy number plasmids, displays both dynamic instability and symmetrical, bidirectional polymerization. The dynamic instability of ParM is regulated by adenosine triphosphate (ATP) hydrolysis, and filaments are stabilized by a cap of ATP-bound monomers. ParM is not related to tubulin, so its dynamic instability must have arisen by convergent evolution driven by a set of common constraints on polymer-based segregation of DNA.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>15528442</pmid><doi>10.1126/science.1101313</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2004-11, Vol.306 (5698), p.1021-1025 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_743191151 |
source | American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE |
subjects | Actin Actins Actins - chemistry Adenosine Triphosphate - metabolism Bacterial Proteins - chemistry Bacterial Proteins - physiology Bacterial Proteins - ultrastructure Bacteriology Biological and medical sciences Biopolymers - chemistry Cellular biology Deoxyribonucleic acid DNA DNA, Bacterial - metabolism Fluorescence Fluorescence Resonance Energy Transfer Fundamental and applied biological sciences. Psychology Genetic aspects Hydrolysis Kinetics Microbiology Microscopy Microscopy, Fluorescence Miscellaneous Monomers Mutagenesis Nucleation Numbers Observation Plasmids Polymerization Polymers Prokaryotes |
title | Dynamic Instability in a DNA-Segregating Prokaryotic Actin Homolog |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Instability%20in%20a%20DNA-Segregating%20Prokaryotic%20Actin%20Homolog&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Garner,%20Ethan%20C.&rft.date=2004-11-05&rft.volume=306&rft.issue=5698&rft.spage=1021&rft.epage=1025&rft.pages=1021-1025&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1101313&rft_dat=%3Cgale_proqu%3EA125335660%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213574101&rft_id=info:pmid/15528442&rft_galeid=A125335660&rft_jstor_id=3839433&rfr_iscdi=true |