Design of gate stacks for improved program/erase speed, retention and process margin aiming next generation metal nanocrystal memories

In this work, gate stacks in metal nanocrystal (NC) memories, as promising next generation storage devices and their systems, are extensively investigated. A comparative analysis and characterization of the program/erase (P/E) speed, retention and the process margin of cobalt NC memories including h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semiconductor science and technology 2009-11, Vol.24 (11), p.115009 (11)-115009 (11)
Hauptverfasser: Jang, Jaeman, Choi, Changmin, Lee, Jang-Sik, Min, Kyeong-Sik, Lee, Jaegab, Kim, Dong Myong, Kim, Dae Hwan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115009 (11)
container_issue 11
container_start_page 115009 (11)
container_title Semiconductor science and technology
container_volume 24
creator Jang, Jaeman
Choi, Changmin
Lee, Jang-Sik
Min, Kyeong-Sik
Lee, Jaegab
Kim, Dong Myong
Kim, Dae Hwan
description In this work, gate stacks in metal nanocrystal (NC) memories, as promising next generation storage devices and their systems, are extensively investigated. A comparative analysis and characterization of the program/erase (P/E) speed, retention and the process margin of cobalt NC memories including high-k and bandgap engineering technologies are performed by using the technology computer-aided design (TCAD) simulation. It is shown that NC memory with high-k dielectric (HfO2) has better performance in P/E speed and retention when the diameter of NC is below 5 nm. When the diameter is beyond 5 nm, on the other hand, the bandgap-engineered bottom oxide gate structure shows improved performance in P/E speed and retention. From the process margin perspective, as the permittivity of the dielectric gets larger, the limits of the diameter and the density of NCs allow the degree of freedom to become larger.
doi_str_mv 10.1088/0268-1242/24/11/115009
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_743177475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743177475</sourcerecordid><originalsourceid>FETCH-LOGICAL-p117t-1573d76764cdc445bd9b532a88ecb550a513be9cefbe24305028b41c508ebb123</originalsourceid><addsrcrecordid>eNo9js1KAzEUhbNQsFZfQbJz4zj5bdKl1F8ouNF1STJ3hugkqUkq-gI-t2MV4cC5nPvdy0HojJJLSrRuCVvohjLBWiZaSidJQpYHaPa_OELHpbwQQqnmZIa-rqH4IeLU48FUwKUa91pwnzL2YZvTO3R4siGb0EI2ZSK2AN0FzlAhVp8iNnGPOCgFB5MHP0U--DjgCB8VDxCnwz0ZoJoRRxOTy5_lZw4QUvZQTtBhb8YCp38-R8-3N0-r-2b9ePewulo3W0pVbahUvFMLtRCuc0JI2y2t5MxoDc5KSYyk3MLSQW-BCU4kYdoK6iTRYC1lfI7Of_9Ohd92UOom-OJgHE2EtCsbJThVSijJvwG2hGb0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743177475</pqid></control><display><type>article</type><title>Design of gate stacks for improved program/erase speed, retention and process margin aiming next generation metal nanocrystal memories</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Jang, Jaeman ; Choi, Changmin ; Lee, Jang-Sik ; Min, Kyeong-Sik ; Lee, Jaegab ; Kim, Dong Myong ; Kim, Dae Hwan</creator><creatorcontrib>Jang, Jaeman ; Choi, Changmin ; Lee, Jang-Sik ; Min, Kyeong-Sik ; Lee, Jaegab ; Kim, Dong Myong ; Kim, Dae Hwan</creatorcontrib><description>In this work, gate stacks in metal nanocrystal (NC) memories, as promising next generation storage devices and their systems, are extensively investigated. A comparative analysis and characterization of the program/erase (P/E) speed, retention and the process margin of cobalt NC memories including high-k and bandgap engineering technologies are performed by using the technology computer-aided design (TCAD) simulation. It is shown that NC memory with high-k dielectric (HfO2) has better performance in P/E speed and retention when the diameter of NC is below 5 nm. When the diameter is beyond 5 nm, on the other hand, the bandgap-engineered bottom oxide gate structure shows improved performance in P/E speed and retention. From the process margin perspective, as the permittivity of the dielectric gets larger, the limits of the diameter and the density of NCs allow the degree of freedom to become larger.</description><identifier>ISSN: 0268-1242</identifier><identifier>DOI: 10.1088/0268-1242/24/11/115009</identifier><language>eng</language><ispartof>Semiconductor science and technology, 2009-11, Vol.24 (11), p.115009 (11)-115009 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jang, Jaeman</creatorcontrib><creatorcontrib>Choi, Changmin</creatorcontrib><creatorcontrib>Lee, Jang-Sik</creatorcontrib><creatorcontrib>Min, Kyeong-Sik</creatorcontrib><creatorcontrib>Lee, Jaegab</creatorcontrib><creatorcontrib>Kim, Dong Myong</creatorcontrib><creatorcontrib>Kim, Dae Hwan</creatorcontrib><title>Design of gate stacks for improved program/erase speed, retention and process margin aiming next generation metal nanocrystal memories</title><title>Semiconductor science and technology</title><description>In this work, gate stacks in metal nanocrystal (NC) memories, as promising next generation storage devices and their systems, are extensively investigated. A comparative analysis and characterization of the program/erase (P/E) speed, retention and the process margin of cobalt NC memories including high-k and bandgap engineering technologies are performed by using the technology computer-aided design (TCAD) simulation. It is shown that NC memory with high-k dielectric (HfO2) has better performance in P/E speed and retention when the diameter of NC is below 5 nm. When the diameter is beyond 5 nm, on the other hand, the bandgap-engineered bottom oxide gate structure shows improved performance in P/E speed and retention. From the process margin perspective, as the permittivity of the dielectric gets larger, the limits of the diameter and the density of NCs allow the degree of freedom to become larger.</description><issn>0268-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9js1KAzEUhbNQsFZfQbJz4zj5bdKl1F8ouNF1STJ3hugkqUkq-gI-t2MV4cC5nPvdy0HojJJLSrRuCVvohjLBWiZaSidJQpYHaPa_OELHpbwQQqnmZIa-rqH4IeLU48FUwKUa91pwnzL2YZvTO3R4siGb0EI2ZSK2AN0FzlAhVp8iNnGPOCgFB5MHP0U--DjgCB8VDxCnwz0ZoJoRRxOTy5_lZw4QUvZQTtBhb8YCp38-R8-3N0-r-2b9ePewulo3W0pVbahUvFMLtRCuc0JI2y2t5MxoDc5KSYyk3MLSQW-BCU4kYdoK6iTRYC1lfI7Of_9Ohd92UOom-OJgHE2EtCsbJThVSijJvwG2hGb0</recordid><startdate>20091102</startdate><enddate>20091102</enddate><creator>Jang, Jaeman</creator><creator>Choi, Changmin</creator><creator>Lee, Jang-Sik</creator><creator>Min, Kyeong-Sik</creator><creator>Lee, Jaegab</creator><creator>Kim, Dong Myong</creator><creator>Kim, Dae Hwan</creator><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20091102</creationdate><title>Design of gate stacks for improved program/erase speed, retention and process margin aiming next generation metal nanocrystal memories</title><author>Jang, Jaeman ; Choi, Changmin ; Lee, Jang-Sik ; Min, Kyeong-Sik ; Lee, Jaegab ; Kim, Dong Myong ; Kim, Dae Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p117t-1573d76764cdc445bd9b532a88ecb550a513be9cefbe24305028b41c508ebb123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Jaeman</creatorcontrib><creatorcontrib>Choi, Changmin</creatorcontrib><creatorcontrib>Lee, Jang-Sik</creatorcontrib><creatorcontrib>Min, Kyeong-Sik</creatorcontrib><creatorcontrib>Lee, Jaegab</creatorcontrib><creatorcontrib>Kim, Dong Myong</creatorcontrib><creatorcontrib>Kim, Dae Hwan</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Semiconductor science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Jaeman</au><au>Choi, Changmin</au><au>Lee, Jang-Sik</au><au>Min, Kyeong-Sik</au><au>Lee, Jaegab</au><au>Kim, Dong Myong</au><au>Kim, Dae Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of gate stacks for improved program/erase speed, retention and process margin aiming next generation metal nanocrystal memories</atitle><jtitle>Semiconductor science and technology</jtitle><date>2009-11-02</date><risdate>2009</risdate><volume>24</volume><issue>11</issue><spage>115009 (11)</spage><epage>115009 (11)</epage><pages>115009 (11)-115009 (11)</pages><issn>0268-1242</issn><abstract>In this work, gate stacks in metal nanocrystal (NC) memories, as promising next generation storage devices and their systems, are extensively investigated. A comparative analysis and characterization of the program/erase (P/E) speed, retention and the process margin of cobalt NC memories including high-k and bandgap engineering technologies are performed by using the technology computer-aided design (TCAD) simulation. It is shown that NC memory with high-k dielectric (HfO2) has better performance in P/E speed and retention when the diameter of NC is below 5 nm. When the diameter is beyond 5 nm, on the other hand, the bandgap-engineered bottom oxide gate structure shows improved performance in P/E speed and retention. From the process margin perspective, as the permittivity of the dielectric gets larger, the limits of the diameter and the density of NCs allow the degree of freedom to become larger.</abstract><doi>10.1088/0268-1242/24/11/115009</doi></addata></record>
fulltext fulltext
identifier ISSN: 0268-1242
ispartof Semiconductor science and technology, 2009-11, Vol.24 (11), p.115009 (11)-115009 (11)
issn 0268-1242
language eng
recordid cdi_proquest_miscellaneous_743177475
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Design of gate stacks for improved program/erase speed, retention and process margin aiming next generation metal nanocrystal memories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20gate%20stacks%20for%20improved%20program/erase%20speed,%20retention%20and%20process%20margin%20aiming%20next%20generation%20metal%20nanocrystal%20memories&rft.jtitle=Semiconductor%20science%20and%20technology&rft.au=Jang,%20Jaeman&rft.date=2009-11-02&rft.volume=24&rft.issue=11&rft.spage=115009%20(11)&rft.epage=115009%20(11)&rft.pages=115009%20(11)-115009%20(11)&rft.issn=0268-1242&rft_id=info:doi/10.1088/0268-1242/24/11/115009&rft_dat=%3Cproquest%3E743177475%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743177475&rft_id=info:pmid/&rfr_iscdi=true