DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination
Non-coding apurinic/apyrimidinic (AP) sites in DNA are continually created in cells both spontaneously and by damage-specific DNA glycosylases. The biologically critical human base excision repair enzyme APE1 cleaves the DNA sugar-phosphate backbone at a position 5′ of AP sites to prime DNA repair s...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2000-01, Vol.403 (6768), p.451-456 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 456 |
---|---|
container_issue | 6768 |
container_start_page | 451 |
container_title | Nature (London) |
container_volume | 403 |
creator | Tainer, John A Mol, Clifford D Izumi, Tadahide Mitra, Sankar |
description | Non-coding apurinic/apyrimidinic (AP) sites in DNA are continually created
in cells both spontaneously and by damage-specific DNA glycosylases.
The biologically critical human base excision repair enzyme APE1 cleaves the
DNA sugar-phosphate backbone at a position 5′ of AP sites to prime DNA
repair synthesis. Here we report three co-crystal structures
of human APE1 bound to abasic DNA which show that APE1 uses a rigid, pre-formed,
positively charged surface to kink the DNA helix and engulf the AP-DNA strand.
APE1 inserts loops into both the DNA major and minor grooves and binds a flipped-out
AP site in a pocket that excludes DNA bases and racemized β-anomer AP
sites. Both the APE1 active-site geometry and a complex with cleaved AP-DNA
and Mn2+ support a testable structure-based catalytic mechanism.
Alanine substitutions of the residues that penetrate the DNA helix unexpectedly
show that human APE1 is structurally optimized to retain the cleaved DNA product.
These structural and mutational results show how APE1 probably displaces bound
glycosylases and retains the nicked DNA product, suggesting that APE1 acts
in vivo to coordinate the orderly transfer of unstable DNA damage intermediates
between the excision and synthesis steps of DNA repair. |
doi_str_mv | 10.1038/35000249 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743167585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A188114939</galeid><sourcerecordid>A188114939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c728t-504e7f9d6dd446d0730bd462ea70c5fe669fb1f5ad4a13804392de00e6e18ffe3</originalsourceid><addsrcrecordid>eNqF0mFr1DAYB_Aiijun4CeQIsMp0pk0aZK-LLepgzFFJ76zpMmTI6NNb0kq7tub7c7dTjalL0Kf_PKEPPyz7DlGBxgR8Y5UCKGS1g-yGaacFZQJ_jCbpZookCBsJ3sSwnkyFeb0cbaDEWNcIDTLfhyeNkU3Tk7nIfpJxclDyGX6HaYoXQy5h58g-1x2MliVJ5531mnrFnl3mTefj_B1zcNSWn99UI2jT_sy2tE9zR4Z2Qd4tl53s2_vj87mH4uTTx-O581JoXgpYlEhCtzUmmlNKdOIE9RpykqQHKnKAGO16bCppKYSE4EoqUsNCAEDLIwBspvtr_ou_XgxQYjtYIOCvpcOxim0nBLMeCWqJF__U2LOGaOU1mWir_5DKU9Tpwm-_Auej5N36cFtiSjlHJGri4sVWsgeWuvMGL1UC3DgZT86MDaVGywExrQm9abplldLe9HeRgd3oPRpGKy6s-ubrQPJRPgVF3IKoT3--mXbvr3fNmff56fbej1Y5ccQPJh26e0g_WWLUXuV0vZPShN9sZ7X1A2gb8FVLBPYWwMZlOyNl07ZsHGlECUhm8eEtOMW4Ddzv__OFMyU8ZteN-A3Kxf9zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204477035</pqid></control><display><type>article</type><title>DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tainer, John A ; Mol, Clifford D ; Izumi, Tadahide ; Mitra, Sankar</creator><creatorcontrib>Tainer, John A ; Mol, Clifford D ; Izumi, Tadahide ; Mitra, Sankar</creatorcontrib><description>Non-coding apurinic/apyrimidinic (AP) sites in DNA are continually created
in cells both spontaneously and by damage-specific DNA glycosylases.
The biologically critical human base excision repair enzyme APE1 cleaves the
DNA sugar-phosphate backbone at a position 5′ of AP sites to prime DNA
repair synthesis. Here we report three co-crystal structures
of human APE1 bound to abasic DNA which show that APE1 uses a rigid, pre-formed,
positively charged surface to kink the DNA helix and engulf the AP-DNA strand.
APE1 inserts loops into both the DNA major and minor grooves and binds a flipped-out
AP site in a pocket that excludes DNA bases and racemized β-anomer AP
sites. Both the APE1 active-site geometry and a complex with cleaved AP-DNA
and Mn2+ support a testable structure-based catalytic mechanism.
Alanine substitutions of the residues that penetrate the DNA helix unexpectedly
show that human APE1 is structurally optimized to retain the cleaved DNA product.
These structural and mutational results show how APE1 probably displaces bound
glycosylases and retains the nicked DNA product, suggesting that APE1 acts
in vivo to coordinate the orderly transfer of unstable DNA damage intermediates
between the excision and synthesis steps of DNA repair.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/35000249</identifier><identifier>PMID: 10667800</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Aminopeptidases - chemistry ; Aminopeptidases - genetics ; Aminopeptidases - metabolism ; APE1 protein ; Biological and medical sciences ; Cellular biology ; Crystallography ; Crystallography, X-Ray ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - metabolism ; DNA Repair ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Humanities and Social Sciences ; Humans ; letter ; Models, Molecular ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; multidisciplinary ; Mutagenesis, Site-Directed ; Mutagenesis. Repair ; Mutation ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins ; Science ; Science (multidisciplinary) ; Substrate Specificity</subject><ispartof>Nature (London), 2000-01, Vol.403 (6768), p.451-456</ispartof><rights>Macmillan Magazines Ltd. 2000</rights><rights>2000 INIST-CNRS</rights><rights>COPYRIGHT 2000 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Jan 27, 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c728t-504e7f9d6dd446d0730bd462ea70c5fe669fb1f5ad4a13804392de00e6e18ffe3</citedby><cites>FETCH-LOGICAL-c728t-504e7f9d6dd446d0730bd462ea70c5fe669fb1f5ad4a13804392de00e6e18ffe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/35000249$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/35000249$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1288233$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10667800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tainer, John A</creatorcontrib><creatorcontrib>Mol, Clifford D</creatorcontrib><creatorcontrib>Izumi, Tadahide</creatorcontrib><creatorcontrib>Mitra, Sankar</creatorcontrib><title>DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Non-coding apurinic/apyrimidinic (AP) sites in DNA are continually created
in cells both spontaneously and by damage-specific DNA glycosylases.
The biologically critical human base excision repair enzyme APE1 cleaves the
DNA sugar-phosphate backbone at a position 5′ of AP sites to prime DNA
repair synthesis. Here we report three co-crystal structures
of human APE1 bound to abasic DNA which show that APE1 uses a rigid, pre-formed,
positively charged surface to kink the DNA helix and engulf the AP-DNA strand.
APE1 inserts loops into both the DNA major and minor grooves and binds a flipped-out
AP site in a pocket that excludes DNA bases and racemized β-anomer AP
sites. Both the APE1 active-site geometry and a complex with cleaved AP-DNA
and Mn2+ support a testable structure-based catalytic mechanism.
Alanine substitutions of the residues that penetrate the DNA helix unexpectedly
show that human APE1 is structurally optimized to retain the cleaved DNA product.
These structural and mutational results show how APE1 probably displaces bound
glycosylases and retains the nicked DNA product, suggesting that APE1 acts
in vivo to coordinate the orderly transfer of unstable DNA damage intermediates
between the excision and synthesis steps of DNA repair.</description><subject>Aminopeptidases - chemistry</subject><subject>Aminopeptidases - genetics</subject><subject>Aminopeptidases - metabolism</subject><subject>APE1 protein</subject><subject>Biological and medical sciences</subject><subject>Cellular biology</subject><subject>Crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA Repair</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>letter</subject><subject>Models, Molecular</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>multidisciplinary</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutagenesis. Repair</subject><subject>Mutation</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Structure, Tertiary</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Substrate Specificity</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0mFr1DAYB_Aiijun4CeQIsMp0pk0aZK-LLepgzFFJ76zpMmTI6NNb0kq7tub7c7dTjalL0Kf_PKEPPyz7DlGBxgR8Y5UCKGS1g-yGaacFZQJ_jCbpZookCBsJ3sSwnkyFeb0cbaDEWNcIDTLfhyeNkU3Tk7nIfpJxclDyGX6HaYoXQy5h58g-1x2MliVJ5531mnrFnl3mTefj_B1zcNSWn99UI2jT_sy2tE9zR4Z2Qd4tl53s2_vj87mH4uTTx-O581JoXgpYlEhCtzUmmlNKdOIE9RpykqQHKnKAGO16bCppKYSE4EoqUsNCAEDLIwBspvtr_ou_XgxQYjtYIOCvpcOxim0nBLMeCWqJF__U2LOGaOU1mWir_5DKU9Tpwm-_Auej5N36cFtiSjlHJGri4sVWsgeWuvMGL1UC3DgZT86MDaVGywExrQm9abplldLe9HeRgd3oPRpGKy6s-ubrQPJRPgVF3IKoT3--mXbvr3fNmff56fbej1Y5ccQPJh26e0g_WWLUXuV0vZPShN9sZ7X1A2gb8FVLBPYWwMZlOyNl07ZsHGlECUhm8eEtOMW4Ddzv__OFMyU8ZteN-A3Kxf9zw</recordid><startdate>20000127</startdate><enddate>20000127</enddate><creator>Tainer, John A</creator><creator>Mol, Clifford D</creator><creator>Izumi, Tadahide</creator><creator>Mitra, Sankar</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20000127</creationdate><title>DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination</title><author>Tainer, John A ; Mol, Clifford D ; Izumi, Tadahide ; Mitra, Sankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c728t-504e7f9d6dd446d0730bd462ea70c5fe669fb1f5ad4a13804392de00e6e18ffe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Aminopeptidases - chemistry</topic><topic>Aminopeptidases - genetics</topic><topic>Aminopeptidases - metabolism</topic><topic>APE1 protein</topic><topic>Biological and medical sciences</topic><topic>Cellular biology</topic><topic>Crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA Repair</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>letter</topic><topic>Models, Molecular</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>multidisciplinary</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutagenesis. Repair</topic><topic>Mutation</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Structure, Tertiary</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tainer, John A</creatorcontrib><creatorcontrib>Mol, Clifford D</creatorcontrib><creatorcontrib>Izumi, Tadahide</creatorcontrib><creatorcontrib>Mitra, Sankar</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tainer, John A</au><au>Mol, Clifford D</au><au>Izumi, Tadahide</au><au>Mitra, Sankar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2000-01-27</date><risdate>2000</risdate><volume>403</volume><issue>6768</issue><spage>451</spage><epage>456</epage><pages>451-456</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Non-coding apurinic/apyrimidinic (AP) sites in DNA are continually created
in cells both spontaneously and by damage-specific DNA glycosylases.
The biologically critical human base excision repair enzyme APE1 cleaves the
DNA sugar-phosphate backbone at a position 5′ of AP sites to prime DNA
repair synthesis. Here we report three co-crystal structures
of human APE1 bound to abasic DNA which show that APE1 uses a rigid, pre-formed,
positively charged surface to kink the DNA helix and engulf the AP-DNA strand.
APE1 inserts loops into both the DNA major and minor grooves and binds a flipped-out
AP site in a pocket that excludes DNA bases and racemized β-anomer AP
sites. Both the APE1 active-site geometry and a complex with cleaved AP-DNA
and Mn2+ support a testable structure-based catalytic mechanism.
Alanine substitutions of the residues that penetrate the DNA helix unexpectedly
show that human APE1 is structurally optimized to retain the cleaved DNA product.
These structural and mutational results show how APE1 probably displaces bound
glycosylases and retains the nicked DNA product, suggesting that APE1 acts
in vivo to coordinate the orderly transfer of unstable DNA damage intermediates
between the excision and synthesis steps of DNA repair.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>10667800</pmid><doi>10.1038/35000249</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2000-01, Vol.403 (6768), p.451-456 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_743167585 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | Aminopeptidases - chemistry Aminopeptidases - genetics Aminopeptidases - metabolism APE1 protein Biological and medical sciences Cellular biology Crystallography Crystallography, X-Ray Deoxyribonucleic acid DNA DNA - chemistry DNA - metabolism DNA Repair Enzymes Fundamental and applied biological sciences. Psychology Humanities and Social Sciences Humans letter Models, Molecular Molecular and cellular biology Molecular genetics Molecular Sequence Data multidisciplinary Mutagenesis, Site-Directed Mutagenesis. Repair Mutation Protein Binding Protein Conformation Protein Structure, Tertiary Saccharomyces cerevisiae Proteins Science Science (multidisciplinary) Substrate Specificity |
title | DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA-bound%20structures%20and%20mutants%20reveal%20abasic%20DNA%20binding%20by%20APE1%20DNA%20repair%20and%20coordination&rft.jtitle=Nature%20(London)&rft.au=Tainer,%20John%20A&rft.date=2000-01-27&rft.volume=403&rft.issue=6768&rft.spage=451&rft.epage=456&rft.pages=451-456&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/35000249&rft_dat=%3Cgale_proqu%3EA188114939%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204477035&rft_id=info:pmid/10667800&rft_galeid=A188114939&rfr_iscdi=true |