Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands
Potassium channels are essential for maintaining a normal ionic balance across cell membranes. Central to this function is the ability of such channels to support transmembrane ion conduction at nearly diffusion-limited rates while discriminating for K + over Na + by more than a thousand-fold. This...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2004-10, Vol.431 (7010), p.830-834 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 834 |
---|---|
container_issue | 7010 |
container_start_page | 830 |
container_title | Nature (London) |
container_volume | 431 |
creator | Noskov, Sergei Yu Bernèche, Simon Roux, Benoît |
description | Potassium channels are essential for maintaining a normal ionic balance across cell membranes. Central to this function is the ability of such channels to support transmembrane ion conduction at nearly diffusion-limited rates while discriminating for K
+
over Na
+
by more than a thousand-fold. This selectivity arises because the transfer of the K
+
ion into the channel pore is energetically favoured, a feature commonly attributed to a structurally precise fit between the K
+
ion and carbonyl groups lining the rigid and narrow pore
1
. But proteins are relatively flexible structures
2
,
3
that undergo rapid thermal atomic fluctuations larger than the small difference in ionic radius between K
+
and Na
+
. Here we present molecular dynamics simulations for the potassium channel KcsA, which show that the carbonyl groups coordinating the ion in the narrow pore are indeed very dynamic (‘liquid-like’) and that their intrinsic electrostatic properties control ion selectivity. This finding highlights the importance of the classical concept of field strength
4
. Selectivity for K
+
is seen to emerge as a robust feature of a flexible fluctuating pore lined by carbonyl groups. |
doi_str_mv | 10.1038/nature02943 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743148640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A186288277</galeid><sourcerecordid>A186288277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c651t-293bb3ea4d540f701ec00516e64d3bf30ee9eacb5c34477719cfa1b433b3bfff3</originalsourceid><addsrcrecordid>eNp90t-LFCEcAPAhim7v6qn3kOCKqLl0dHTmcVn6cXAU1EWPg-N83TxcnVMnbv_73HZhb2MLHxT9-FW_foviGcEXBNPmnZNpCoCrltEHxYwwwUvGG_GwmGFcNSVuKD8pTmO8wRjXRLDHxQmpWZ7FzaywC-9S8BZ5jYx3KIIFlcwvk9bIODT6JGM00wqpn9I5sBH1a_THBB-TTEYh6QY0rJ1c5fEY_AghGYibgEqG3ru1RdYss4pPikda2ghPd_1Z8f3D--vFp_Lqy8fLxfyqVLwmqaxa2vcUJBtqhrXABNTm5hw4G2ivKQZoQaq-VpQxIQRplZakZ5T2eVlrela82sbN17mdIKZuZaICa6UDP8VOMEpYwxnO8uV_JeftptEMX_wFb_wUXH5FV2FW121T8YzKLVpKC51x2qcg1RIcBGm9A23y9Jw0vGqaSoh90AOvRnPb3UcXR1BuA-SMH436-mBDNgnu0lJOMXaX374e2jf_tvPrH4vPR7XKnx8D6G4MZiXDuiO429Rid68Ws36-S9nUr2DY213xZXC-AzIqaXWQTpm4d5y0tBIb93brYl5ySwj73B879zeaH_TT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204559826</pqid></control><display><type>article</type><title>Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands</title><source>MEDLINE</source><source>Nature Journals</source><source>SpringerLink</source><creator>Noskov, Sergei Yu ; Bernèche, Simon ; Roux, Benoît</creator><creatorcontrib>Noskov, Sergei Yu ; Bernèche, Simon ; Roux, Benoît</creatorcontrib><description>Potassium channels are essential for maintaining a normal ionic balance across cell membranes. Central to this function is the ability of such channels to support transmembrane ion conduction at nearly diffusion-limited rates while discriminating for K
+
over Na
+
by more than a thousand-fold. This selectivity arises because the transfer of the K
+
ion into the channel pore is energetically favoured, a feature commonly attributed to a structurally precise fit between the K
+
ion and carbonyl groups lining the rigid and narrow pore
1
. But proteins are relatively flexible structures
2
,
3
that undergo rapid thermal atomic fluctuations larger than the small difference in ionic radius between K
+
and Na
+
. Here we present molecular dynamics simulations for the potassium channel KcsA, which show that the carbonyl groups coordinating the ion in the narrow pore are indeed very dynamic (‘liquid-like’) and that their intrinsic electrostatic properties control ion selectivity. This finding highlights the importance of the classical concept of field strength
4
. Selectivity for K
+
is seen to emerge as a robust feature of a flexible fluctuating pore lined by carbonyl groups.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature02943</identifier><identifier>PMID: 15483608</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Binding Sites ; Biochemistry ; Biological and medical sciences ; Carbonyl compounds ; Cations - metabolism ; Cell physiology ; Fundamental and applied biological sciences. Psychology ; Humanities and Social Sciences ; Ion Channel Gating ; Ions ; letter ; Ligands ; Membrane and intracellular transports ; Membranes ; Models, Molecular ; Molecular and cellular biology ; multidisciplinary ; Oxygen - metabolism ; Potassium ; Potassium - metabolism ; Potassium Channels - chemistry ; Potassium Channels - metabolism ; Proteins ; Science ; Science (multidisciplinary) ; Sodium - metabolism ; Static Electricity ; Substrate Specificity ; Thermodynamics</subject><ispartof>Nature (London), 2004-10, Vol.431 (7010), p.830-834</ispartof><rights>Macmillan Magazines Ltd. 2004</rights><rights>2004 INIST-CNRS</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Oct 14, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c651t-293bb3ea4d540f701ec00516e64d3bf30ee9eacb5c34477719cfa1b433b3bfff3</citedby><cites>FETCH-LOGICAL-c651t-293bb3ea4d540f701ec00516e64d3bf30ee9eacb5c34477719cfa1b433b3bfff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature02943$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature02943$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16193278$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15483608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Noskov, Sergei Yu</creatorcontrib><creatorcontrib>Bernèche, Simon</creatorcontrib><creatorcontrib>Roux, Benoît</creatorcontrib><title>Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Potassium channels are essential for maintaining a normal ionic balance across cell membranes. Central to this function is the ability of such channels to support transmembrane ion conduction at nearly diffusion-limited rates while discriminating for K
+
over Na
+
by more than a thousand-fold. This selectivity arises because the transfer of the K
+
ion into the channel pore is energetically favoured, a feature commonly attributed to a structurally precise fit between the K
+
ion and carbonyl groups lining the rigid and narrow pore
1
. But proteins are relatively flexible structures
2
,
3
that undergo rapid thermal atomic fluctuations larger than the small difference in ionic radius between K
+
and Na
+
. Here we present molecular dynamics simulations for the potassium channel KcsA, which show that the carbonyl groups coordinating the ion in the narrow pore are indeed very dynamic (‘liquid-like’) and that their intrinsic electrostatic properties control ion selectivity. This finding highlights the importance of the classical concept of field strength
4
. Selectivity for K
+
is seen to emerge as a robust feature of a flexible fluctuating pore lined by carbonyl groups.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Carbonyl compounds</subject><subject>Cations - metabolism</subject><subject>Cell physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humanities and Social Sciences</subject><subject>Ion Channel Gating</subject><subject>Ions</subject><subject>letter</subject><subject>Ligands</subject><subject>Membrane and intracellular transports</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Molecular and cellular biology</subject><subject>multidisciplinary</subject><subject>Oxygen - metabolism</subject><subject>Potassium</subject><subject>Potassium - metabolism</subject><subject>Potassium Channels - chemistry</subject><subject>Potassium Channels - metabolism</subject><subject>Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sodium - metabolism</subject><subject>Static Electricity</subject><subject>Substrate Specificity</subject><subject>Thermodynamics</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90t-LFCEcAPAhim7v6qn3kOCKqLl0dHTmcVn6cXAU1EWPg-N83TxcnVMnbv_73HZhb2MLHxT9-FW_foviGcEXBNPmnZNpCoCrltEHxYwwwUvGG_GwmGFcNSVuKD8pTmO8wRjXRLDHxQmpWZ7FzaywC-9S8BZ5jYx3KIIFlcwvk9bIODT6JGM00wqpn9I5sBH1a_THBB-TTEYh6QY0rJ1c5fEY_AghGYibgEqG3ru1RdYss4pPikda2ghPd_1Z8f3D--vFp_Lqy8fLxfyqVLwmqaxa2vcUJBtqhrXABNTm5hw4G2ivKQZoQaq-VpQxIQRplZakZ5T2eVlrela82sbN17mdIKZuZaICa6UDP8VOMEpYwxnO8uV_JeftptEMX_wFb_wUXH5FV2FW121T8YzKLVpKC51x2qcg1RIcBGm9A23y9Jw0vGqaSoh90AOvRnPb3UcXR1BuA-SMH436-mBDNgnu0lJOMXaX374e2jf_tvPrH4vPR7XKnx8D6G4MZiXDuiO429Rid68Ws36-S9nUr2DY213xZXC-AzIqaXWQTpm4d5y0tBIb93brYl5ySwj73B879zeaH_TT</recordid><startdate>20041014</startdate><enddate>20041014</enddate><creator>Noskov, Sergei Yu</creator><creator>Bernèche, Simon</creator><creator>Roux, Benoît</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20041014</creationdate><title>Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands</title><author>Noskov, Sergei Yu ; Bernèche, Simon ; Roux, Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c651t-293bb3ea4d540f701ec00516e64d3bf30ee9eacb5c34477719cfa1b433b3bfff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Carbonyl compounds</topic><topic>Cations - metabolism</topic><topic>Cell physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humanities and Social Sciences</topic><topic>Ion Channel Gating</topic><topic>Ions</topic><topic>letter</topic><topic>Ligands</topic><topic>Membrane and intracellular transports</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Molecular and cellular biology</topic><topic>multidisciplinary</topic><topic>Oxygen - metabolism</topic><topic>Potassium</topic><topic>Potassium - metabolism</topic><topic>Potassium Channels - chemistry</topic><topic>Potassium Channels - metabolism</topic><topic>Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sodium - metabolism</topic><topic>Static Electricity</topic><topic>Substrate Specificity</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noskov, Sergei Yu</creatorcontrib><creatorcontrib>Bernèche, Simon</creatorcontrib><creatorcontrib>Roux, Benoît</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noskov, Sergei Yu</au><au>Bernèche, Simon</au><au>Roux, Benoît</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2004-10-14</date><risdate>2004</risdate><volume>431</volume><issue>7010</issue><spage>830</spage><epage>834</epage><pages>830-834</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Potassium channels are essential for maintaining a normal ionic balance across cell membranes. Central to this function is the ability of such channels to support transmembrane ion conduction at nearly diffusion-limited rates while discriminating for K
+
over Na
+
by more than a thousand-fold. This selectivity arises because the transfer of the K
+
ion into the channel pore is energetically favoured, a feature commonly attributed to a structurally precise fit between the K
+
ion and carbonyl groups lining the rigid and narrow pore
1
. But proteins are relatively flexible structures
2
,
3
that undergo rapid thermal atomic fluctuations larger than the small difference in ionic radius between K
+
and Na
+
. Here we present molecular dynamics simulations for the potassium channel KcsA, which show that the carbonyl groups coordinating the ion in the narrow pore are indeed very dynamic (‘liquid-like’) and that their intrinsic electrostatic properties control ion selectivity. This finding highlights the importance of the classical concept of field strength
4
. Selectivity for K
+
is seen to emerge as a robust feature of a flexible fluctuating pore lined by carbonyl groups.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15483608</pmid><doi>10.1038/nature02943</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2004-10, Vol.431 (7010), p.830-834 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_743148640 |
source | MEDLINE; Nature Journals; SpringerLink |
subjects | Bacterial Proteins - chemistry Bacterial Proteins - metabolism Binding Sites Biochemistry Biological and medical sciences Carbonyl compounds Cations - metabolism Cell physiology Fundamental and applied biological sciences. Psychology Humanities and Social Sciences Ion Channel Gating Ions letter Ligands Membrane and intracellular transports Membranes Models, Molecular Molecular and cellular biology multidisciplinary Oxygen - metabolism Potassium Potassium - metabolism Potassium Channels - chemistry Potassium Channels - metabolism Proteins Science Science (multidisciplinary) Sodium - metabolism Static Electricity Substrate Specificity Thermodynamics |
title | Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A42%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20ion%20selectivity%20in%20potassium%20channels%20by%20electrostatic%20and%20dynamic%20properties%20of%20carbonyl%20ligands&rft.jtitle=Nature%20(London)&rft.au=Noskov,%20Sergei%20Yu&rft.date=2004-10-14&rft.volume=431&rft.issue=7010&rft.spage=830&rft.epage=834&rft.pages=830-834&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature02943&rft_dat=%3Cgale_proqu%3EA186288277%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204559826&rft_id=info:pmid/15483608&rft_galeid=A186288277&rfr_iscdi=true |