Clay Mineralogy in Arctic Tundra Gelisols, Northern Alaska
Little is understood about chemical weathering processes in Alaskan arctic soils, where moisture is generally not limited but acidity varies and the average soil temperature is close to or below freezing. Weathering reactions in soil convert primary minerals into secondary clay minerals. Silty loam...
Gespeichert in:
Veröffentlicht in: | Soil Science Society of America journal 2010-03, Vol.74 (2), p.580-592 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 592 |
---|---|
container_issue | 2 |
container_start_page | 580 |
container_title | Soil Science Society of America journal |
container_volume | 74 |
creator | Borden, Patrick W Ping, Chien-Lu McCarthy, Paul J Naidu, Sathy |
description | Little is understood about chemical weathering processes in Alaskan arctic soils, where moisture is generally not limited but acidity varies and the average soil temperature is close to or below freezing. Weathering reactions in soil convert primary minerals into secondary clay minerals. Silty loam textured soils from three sites in moist acidic tundra (MAT) and three sites in moist nonacidic tundra (MNT) in the northern Arctic Foothills, Alaska, were characterized with emphasis on the origin of the clay minerals. The MNT soils had a discontinuous and thinner organic layer, which leads to a deeper summer thaw and greater cryoturbation than the MAT soils. The MNT had higher cation exchange capacity and base saturation than MAT. These buffer against acidification and account for the pH differences of MAT and MNT. Other chemical characteristics including C and N content as well as Fe and Al were similar (by horizon) across the MAT/MNT boundary. X-ray diffraction of coarse (0.0002–0.002 mm) and fine clay ( |
doi_str_mv | 10.2136/sssaj2009.0187 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743134163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743134163</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4627-49a283782f0da6bc4c14b8d51fc4bac540167e4b83ff7d0fa03b3851cd5531e43</originalsourceid><addsrcrecordid>eNqFkMtLAzEQxoMoWB9Xry6CeHHr5Lm7godSfOLj0PYcptlEt8ZdTVqk_70pLR68eJmBmd_3zfARckShzyhXFzFGnDGAqg-0LLZIjwouc1CKbpMecEVzWVVyl-zFOAOgsgLokcuhx2X21LQ2oO9el1nTZoNg5o3Jxou2DpjdWt_Ezsfz7LkL8zcbEuAxvuMB2XHooz3c9H0yubkeD-_yx5fb--HgMUehWJGLClnJi5I5qFFNjTBUTMtaUmfEFI0UQFVh04g7V9TgEPiUl5KaWkpOreD75Gzt-xm6r4WNc_3RRGO9x9Z2i6gLwSkXVPFEnvwhZ90itOk5zYVSIAGKBPXXkAldjME6_RmaDwxLTUGvgtS_QepVkElwunHFaNC7gK1p4q-KMVEWAmTirtbcd-Pt8h9XPRo8sNFoVdNoc-d4rXfYaXwN6cZkxIDytIWqEhX_AaYRjYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>346605007</pqid></control><display><type>article</type><title>Clay Mineralogy in Arctic Tundra Gelisols, Northern Alaska</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Borden, Patrick W ; Ping, Chien-Lu ; McCarthy, Paul J ; Naidu, Sathy</creator><creatorcontrib>Borden, Patrick W ; Ping, Chien-Lu ; McCarthy, Paul J ; Naidu, Sathy</creatorcontrib><description>Little is understood about chemical weathering processes in Alaskan arctic soils, where moisture is generally not limited but acidity varies and the average soil temperature is close to or below freezing. Weathering reactions in soil convert primary minerals into secondary clay minerals. Silty loam textured soils from three sites in moist acidic tundra (MAT) and three sites in moist nonacidic tundra (MNT) in the northern Arctic Foothills, Alaska, were characterized with emphasis on the origin of the clay minerals. The MNT soils had a discontinuous and thinner organic layer, which leads to a deeper summer thaw and greater cryoturbation than the MAT soils. The MNT had higher cation exchange capacity and base saturation than MAT. These buffer against acidification and account for the pH differences of MAT and MNT. Other chemical characteristics including C and N content as well as Fe and Al were similar (by horizon) across the MAT/MNT boundary. X-ray diffraction of coarse (0.0002–0.002 mm) and fine clay (<0.0002 mm) fractions indicate that illite, vermiculite, and kaolinite are the predominant clay minerals. Presumably, kaolinite is detrital and vermiculite is weathered from illite. The proportion of vermiculite to illite is higher in MAT and the illite to vermiculite proportion is higher in MNT. This shows that soil acidity does affect weathering processes despite the low soil temperature.</description><identifier>ISSN: 0361-5995</identifier><identifier>EISSN: 1435-0661</identifier><identifier>DOI: 10.2136/sssaj2009.0187</identifier><identifier>CODEN: SSSJD4</identifier><language>eng</language><publisher>Madison: Soil Science Society</publisher><subject>acid soils ; Acidification ; Acidity ; Agronomy. Soil science and plant productions ; aluminum ; Biological and medical sciences ; carbon ; Cation exchange ; cation exchange capacity ; Clay ; clay fraction ; Clay minerals ; Coastal plains ; Cold ; cold soils ; cold zones ; cryoturbation ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Freezing ; frost heave ; Fundamental and applied biological sciences. Psychology ; Gelisols ; Illite ; iron ; Kaolinite ; Low temperature ; Mineralogy ; Minerals ; nitrogen ; organic horizons ; Permafrost ; Silt loam ; silt loam soils ; soil mineralogy ; soil organic matter ; soil pH ; Soil science ; Soil temperature ; Soil texture ; soil water content ; soil weathering ; Soils ; Surficial geology ; Tundra ; vermiculite ; Weathering ; X-ray diffraction</subject><ispartof>Soil Science Society of America journal, 2010-03, Vol.74 (2), p.580-592</ispartof><rights>Soil Science Society of America</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Society of Agronomy Mar/Apr 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4627-49a283782f0da6bc4c14b8d51fc4bac540167e4b83ff7d0fa03b3851cd5531e43</citedby><cites>FETCH-LOGICAL-a4627-49a283782f0da6bc4c14b8d51fc4bac540167e4b83ff7d0fa03b3851cd5531e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2136%2Fsssaj2009.0187$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2136%2Fsssaj2009.0187$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22487405$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Borden, Patrick W</creatorcontrib><creatorcontrib>Ping, Chien-Lu</creatorcontrib><creatorcontrib>McCarthy, Paul J</creatorcontrib><creatorcontrib>Naidu, Sathy</creatorcontrib><title>Clay Mineralogy in Arctic Tundra Gelisols, Northern Alaska</title><title>Soil Science Society of America journal</title><description>Little is understood about chemical weathering processes in Alaskan arctic soils, where moisture is generally not limited but acidity varies and the average soil temperature is close to or below freezing. Weathering reactions in soil convert primary minerals into secondary clay minerals. Silty loam textured soils from three sites in moist acidic tundra (MAT) and three sites in moist nonacidic tundra (MNT) in the northern Arctic Foothills, Alaska, were characterized with emphasis on the origin of the clay minerals. The MNT soils had a discontinuous and thinner organic layer, which leads to a deeper summer thaw and greater cryoturbation than the MAT soils. The MNT had higher cation exchange capacity and base saturation than MAT. These buffer against acidification and account for the pH differences of MAT and MNT. Other chemical characteristics including C and N content as well as Fe and Al were similar (by horizon) across the MAT/MNT boundary. X-ray diffraction of coarse (0.0002–0.002 mm) and fine clay (<0.0002 mm) fractions indicate that illite, vermiculite, and kaolinite are the predominant clay minerals. Presumably, kaolinite is detrital and vermiculite is weathered from illite. The proportion of vermiculite to illite is higher in MAT and the illite to vermiculite proportion is higher in MNT. This shows that soil acidity does affect weathering processes despite the low soil temperature.</description><subject>acid soils</subject><subject>Acidification</subject><subject>Acidity</subject><subject>Agronomy. Soil science and plant productions</subject><subject>aluminum</subject><subject>Biological and medical sciences</subject><subject>carbon</subject><subject>Cation exchange</subject><subject>cation exchange capacity</subject><subject>Clay</subject><subject>clay fraction</subject><subject>Clay minerals</subject><subject>Coastal plains</subject><subject>Cold</subject><subject>cold soils</subject><subject>cold zones</subject><subject>cryoturbation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Freezing</subject><subject>frost heave</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gelisols</subject><subject>Illite</subject><subject>iron</subject><subject>Kaolinite</subject><subject>Low temperature</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>nitrogen</subject><subject>organic horizons</subject><subject>Permafrost</subject><subject>Silt loam</subject><subject>silt loam soils</subject><subject>soil mineralogy</subject><subject>soil organic matter</subject><subject>soil pH</subject><subject>Soil science</subject><subject>Soil temperature</subject><subject>Soil texture</subject><subject>soil water content</subject><subject>soil weathering</subject><subject>Soils</subject><subject>Surficial geology</subject><subject>Tundra</subject><subject>vermiculite</subject><subject>Weathering</subject><subject>X-ray diffraction</subject><issn>0361-5995</issn><issn>1435-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkMtLAzEQxoMoWB9Xry6CeHHr5Lm7godSfOLj0PYcptlEt8ZdTVqk_70pLR68eJmBmd_3zfARckShzyhXFzFGnDGAqg-0LLZIjwouc1CKbpMecEVzWVVyl-zFOAOgsgLokcuhx2X21LQ2oO9el1nTZoNg5o3Jxou2DpjdWt_Ezsfz7LkL8zcbEuAxvuMB2XHooz3c9H0yubkeD-_yx5fb--HgMUehWJGLClnJi5I5qFFNjTBUTMtaUmfEFI0UQFVh04g7V9TgEPiUl5KaWkpOreD75Gzt-xm6r4WNc_3RRGO9x9Z2i6gLwSkXVPFEnvwhZ90itOk5zYVSIAGKBPXXkAldjME6_RmaDwxLTUGvgtS_QepVkElwunHFaNC7gK1p4q-KMVEWAmTirtbcd-Pt8h9XPRo8sNFoVdNoc-d4rXfYaXwN6cZkxIDytIWqEhX_AaYRjYQ</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Borden, Patrick W</creator><creator>Ping, Chien-Lu</creator><creator>McCarthy, Paul J</creator><creator>Naidu, Sathy</creator><general>Soil Science Society</general><general>Soil Science Society of America</general><general>American Society of Agronomy</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>SOI</scope><scope>KR7</scope></search><sort><creationdate>201003</creationdate><title>Clay Mineralogy in Arctic Tundra Gelisols, Northern Alaska</title><author>Borden, Patrick W ; Ping, Chien-Lu ; McCarthy, Paul J ; Naidu, Sathy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4627-49a283782f0da6bc4c14b8d51fc4bac540167e4b83ff7d0fa03b3851cd5531e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>acid soils</topic><topic>Acidification</topic><topic>Acidity</topic><topic>Agronomy. Soil science and plant productions</topic><topic>aluminum</topic><topic>Biological and medical sciences</topic><topic>carbon</topic><topic>Cation exchange</topic><topic>cation exchange capacity</topic><topic>Clay</topic><topic>clay fraction</topic><topic>Clay minerals</topic><topic>Coastal plains</topic><topic>Cold</topic><topic>cold soils</topic><topic>cold zones</topic><topic>cryoturbation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Freezing</topic><topic>frost heave</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gelisols</topic><topic>Illite</topic><topic>iron</topic><topic>Kaolinite</topic><topic>Low temperature</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>nitrogen</topic><topic>organic horizons</topic><topic>Permafrost</topic><topic>Silt loam</topic><topic>silt loam soils</topic><topic>soil mineralogy</topic><topic>soil organic matter</topic><topic>soil pH</topic><topic>Soil science</topic><topic>Soil temperature</topic><topic>Soil texture</topic><topic>soil water content</topic><topic>soil weathering</topic><topic>Soils</topic><topic>Surficial geology</topic><topic>Tundra</topic><topic>vermiculite</topic><topic>Weathering</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borden, Patrick W</creatorcontrib><creatorcontrib>Ping, Chien-Lu</creatorcontrib><creatorcontrib>McCarthy, Paul J</creatorcontrib><creatorcontrib>Naidu, Sathy</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Civil Engineering Abstracts</collection><jtitle>Soil Science Society of America journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borden, Patrick W</au><au>Ping, Chien-Lu</au><au>McCarthy, Paul J</au><au>Naidu, Sathy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clay Mineralogy in Arctic Tundra Gelisols, Northern Alaska</atitle><jtitle>Soil Science Society of America journal</jtitle><date>2010-03</date><risdate>2010</risdate><volume>74</volume><issue>2</issue><spage>580</spage><epage>592</epage><pages>580-592</pages><issn>0361-5995</issn><eissn>1435-0661</eissn><coden>SSSJD4</coden><abstract>Little is understood about chemical weathering processes in Alaskan arctic soils, where moisture is generally not limited but acidity varies and the average soil temperature is close to or below freezing. Weathering reactions in soil convert primary minerals into secondary clay minerals. Silty loam textured soils from three sites in moist acidic tundra (MAT) and three sites in moist nonacidic tundra (MNT) in the northern Arctic Foothills, Alaska, were characterized with emphasis on the origin of the clay minerals. The MNT soils had a discontinuous and thinner organic layer, which leads to a deeper summer thaw and greater cryoturbation than the MAT soils. The MNT had higher cation exchange capacity and base saturation than MAT. These buffer against acidification and account for the pH differences of MAT and MNT. Other chemical characteristics including C and N content as well as Fe and Al were similar (by horizon) across the MAT/MNT boundary. X-ray diffraction of coarse (0.0002–0.002 mm) and fine clay (<0.0002 mm) fractions indicate that illite, vermiculite, and kaolinite are the predominant clay minerals. Presumably, kaolinite is detrital and vermiculite is weathered from illite. The proportion of vermiculite to illite is higher in MAT and the illite to vermiculite proportion is higher in MNT. This shows that soil acidity does affect weathering processes despite the low soil temperature.</abstract><cop>Madison</cop><pub>Soil Science Society</pub><doi>10.2136/sssaj2009.0187</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5995 |
ispartof | Soil Science Society of America journal, 2010-03, Vol.74 (2), p.580-592 |
issn | 0361-5995 1435-0661 |
language | eng |
recordid | cdi_proquest_miscellaneous_743134163 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | acid soils Acidification Acidity Agronomy. Soil science and plant productions aluminum Biological and medical sciences carbon Cation exchange cation exchange capacity Clay clay fraction Clay minerals Coastal plains Cold cold soils cold zones cryoturbation Earth sciences Earth, ocean, space Exact sciences and technology Freezing frost heave Fundamental and applied biological sciences. Psychology Gelisols Illite iron Kaolinite Low temperature Mineralogy Minerals nitrogen organic horizons Permafrost Silt loam silt loam soils soil mineralogy soil organic matter soil pH Soil science Soil temperature Soil texture soil water content soil weathering Soils Surficial geology Tundra vermiculite Weathering X-ray diffraction |
title | Clay Mineralogy in Arctic Tundra Gelisols, Northern Alaska |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clay%20Mineralogy%20in%20Arctic%20Tundra%20Gelisols,%20Northern%20Alaska&rft.jtitle=Soil%20Science%20Society%20of%20America%20journal&rft.au=Borden,%20Patrick%20W&rft.date=2010-03&rft.volume=74&rft.issue=2&rft.spage=580&rft.epage=592&rft.pages=580-592&rft.issn=0361-5995&rft.eissn=1435-0661&rft.coden=SSSJD4&rft_id=info:doi/10.2136/sssaj2009.0187&rft_dat=%3Cproquest_cross%3E743134163%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=346605007&rft_id=info:pmid/&rfr_iscdi=true |