Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal
Diffraction, a fundamental process in wave physics, leads to spreading of the optical beams as they propagate. However, new photonic crystal (PhC) meta-materials can be nano-engineered to generate extreme anisotropy, resulting in apparent propagation of light without diffraction. This surprising phe...
Gespeichert in:
Veröffentlicht in: | Nature materials 2006-02, Vol.5 (2), p.93-96 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 96 |
---|---|
container_issue | 2 |
container_start_page | 93 |
container_title | Nature materials |
container_volume | 5 |
creator | Rakich, Peter T. Dahlem, Marcus S. Tandon, Sheila Ibanescu, Mihai Soljačić, Marin Petrich, Gale S. Joannopoulos, John D. Kolodziejski, Leslie A. Ippen, Erich P. |
description | Diffraction, a fundamental process in wave physics, leads to spreading of the optical beams as they propagate. However, new photonic crystal (PhC) meta-materials can be nano-engineered to generate extreme anisotropy, resulting in apparent propagation of light without diffraction. This surprising phenomenon, called supercollimation, effectively freezes the spatial width of a light beam inside a PhC, observed over a few isotropic diffraction-lengths
1
,
2
,
3
,
4
,
5
,
6
. However, using such experiments to predict the behaviour for longer propagation lengths is difficult, as a tiny error in a measured width can extrapolate to order unity uncertainty in the width at distances over hundreds of diffraction-lengths. Here, supercollimation is demonstrated in a macroscopic PhC system over centimetre-scale distances, retaining spatial width confinement without the need for waveguides or nonlinearities. Through quantitative studies of the beam evolution in a two-dimensional PhC, we find that supercollimation possesses unexpected but inherent robustness with respect to short-scale disorder such as fabrication roughness, enabling supercollimation over 600 isotropic diffraction-lengths. The effects of disorder are identified through experiments and understood through rigorous simulations. In addition, a supercollimation steering capability is proposed. |
doi_str_mv | 10.1038/nmat1568 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743121970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>986054411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-41caea6b4dc41db7f745c0917d9332fc845196e7469c47659c4dc6f23ecbcb4f3</originalsourceid><addsrcrecordid>eNp90U1LxDAQBuAgiq6r4C-Q4sGPQzVJ06Q9yuIXLHjRm1DS6XS3kk3WpFX890Z2ZUHBSxKYJ2-YDCFHjF4ymhVXdqF7lstii4yYUDIVUtLt9ZkxzvfIfgivlHKW53KX7DEpWF4oMSIv1zDv8L2zswTQ9t0Ce49pAG0wCcMSPThjuhjfOZt0NtGJ0X6Gqfaok_7DpU28YkOsapMs5653toME_GfotTkgO602AQ_X-5g83948Te7T6ePdw-R6mkKmRJ8KBhq1rEUDgjW1apXIgZZMNWWW8RYKkbNSohKyhNhRHtcGZMszhBpq0WZjcrbKXXr3NmDoq0UXAI3RFt0QKiUyxlmpaJSn_0uquOCUR3jyC766wccmQ8U5V1KVhYjofIXAuxA8ttXSx7_ynxWj1fdgqp_BRHq8zhvqBTYbuJ5EBBcrEGLJztBvHvwT9gUDP5fP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222767984</pqid></control><display><type>article</type><title>Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal</title><source>SpringerLink Journals</source><source>Nature</source><creator>Rakich, Peter T. ; Dahlem, Marcus S. ; Tandon, Sheila ; Ibanescu, Mihai ; Soljačić, Marin ; Petrich, Gale S. ; Joannopoulos, John D. ; Kolodziejski, Leslie A. ; Ippen, Erich P.</creator><creatorcontrib>Rakich, Peter T. ; Dahlem, Marcus S. ; Tandon, Sheila ; Ibanescu, Mihai ; Soljačić, Marin ; Petrich, Gale S. ; Joannopoulos, John D. ; Kolodziejski, Leslie A. ; Ippen, Erich P.</creatorcontrib><description>Diffraction, a fundamental process in wave physics, leads to spreading of the optical beams as they propagate. However, new photonic crystal (PhC) meta-materials can be nano-engineered to generate extreme anisotropy, resulting in apparent propagation of light without diffraction. This surprising phenomenon, called supercollimation, effectively freezes the spatial width of a light beam inside a PhC, observed over a few isotropic diffraction-lengths
1
,
2
,
3
,
4
,
5
,
6
. However, using such experiments to predict the behaviour for longer propagation lengths is difficult, as a tiny error in a measured width can extrapolate to order unity uncertainty in the width at distances over hundreds of diffraction-lengths. Here, supercollimation is demonstrated in a macroscopic PhC system over centimetre-scale distances, retaining spatial width confinement without the need for waveguides or nonlinearities. Through quantitative studies of the beam evolution in a two-dimensional PhC, we find that supercollimation possesses unexpected but inherent robustness with respect to short-scale disorder such as fabrication roughness, enabling supercollimation over 600 isotropic diffraction-lengths. The effects of disorder are identified through experiments and understood through rigorous simulations. In addition, a supercollimation steering capability is proposed.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat1568</identifier><identifier>PMID: 16415874</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Anisotropy ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Evolution ; Experiments ; Fabrication ; letter ; Light ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Propagation ; Quantitative research ; Simulation</subject><ispartof>Nature materials, 2006-02, Vol.5 (2), p.93-96</ispartof><rights>Springer Nature Limited 2006</rights><rights>Copyright Nature Publishing Group Feb 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-41caea6b4dc41db7f745c0917d9332fc845196e7469c47659c4dc6f23ecbcb4f3</citedby><cites>FETCH-LOGICAL-c374t-41caea6b4dc41db7f745c0917d9332fc845196e7469c47659c4dc6f23ecbcb4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat1568$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat1568$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16415874$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rakich, Peter T.</creatorcontrib><creatorcontrib>Dahlem, Marcus S.</creatorcontrib><creatorcontrib>Tandon, Sheila</creatorcontrib><creatorcontrib>Ibanescu, Mihai</creatorcontrib><creatorcontrib>Soljačić, Marin</creatorcontrib><creatorcontrib>Petrich, Gale S.</creatorcontrib><creatorcontrib>Joannopoulos, John D.</creatorcontrib><creatorcontrib>Kolodziejski, Leslie A.</creatorcontrib><creatorcontrib>Ippen, Erich P.</creatorcontrib><title>Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Diffraction, a fundamental process in wave physics, leads to spreading of the optical beams as they propagate. However, new photonic crystal (PhC) meta-materials can be nano-engineered to generate extreme anisotropy, resulting in apparent propagation of light without diffraction. This surprising phenomenon, called supercollimation, effectively freezes the spatial width of a light beam inside a PhC, observed over a few isotropic diffraction-lengths
1
,
2
,
3
,
4
,
5
,
6
. However, using such experiments to predict the behaviour for longer propagation lengths is difficult, as a tiny error in a measured width can extrapolate to order unity uncertainty in the width at distances over hundreds of diffraction-lengths. Here, supercollimation is demonstrated in a macroscopic PhC system over centimetre-scale distances, retaining spatial width confinement without the need for waveguides or nonlinearities. Through quantitative studies of the beam evolution in a two-dimensional PhC, we find that supercollimation possesses unexpected but inherent robustness with respect to short-scale disorder such as fabrication roughness, enabling supercollimation over 600 isotropic diffraction-lengths. The effects of disorder are identified through experiments and understood through rigorous simulations. In addition, a supercollimation steering capability is proposed.</description><subject>Anisotropy</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Evolution</subject><subject>Experiments</subject><subject>Fabrication</subject><subject>letter</subject><subject>Light</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Propagation</subject><subject>Quantitative research</subject><subject>Simulation</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp90U1LxDAQBuAgiq6r4C-Q4sGPQzVJ06Q9yuIXLHjRm1DS6XS3kk3WpFX890Z2ZUHBSxKYJ2-YDCFHjF4ymhVXdqF7lstii4yYUDIVUtLt9ZkxzvfIfgivlHKW53KX7DEpWF4oMSIv1zDv8L2zswTQ9t0Ce49pAG0wCcMSPThjuhjfOZt0NtGJ0X6Gqfaok_7DpU28YkOsapMs5653toME_GfotTkgO602AQ_X-5g83948Te7T6ePdw-R6mkKmRJ8KBhq1rEUDgjW1apXIgZZMNWWW8RYKkbNSohKyhNhRHtcGZMszhBpq0WZjcrbKXXr3NmDoq0UXAI3RFt0QKiUyxlmpaJSn_0uquOCUR3jyC766wccmQ8U5V1KVhYjofIXAuxA8ttXSx7_ynxWj1fdgqp_BRHq8zhvqBTYbuJ5EBBcrEGLJztBvHvwT9gUDP5fP</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Rakich, Peter T.</creator><creator>Dahlem, Marcus S.</creator><creator>Tandon, Sheila</creator><creator>Ibanescu, Mihai</creator><creator>Soljačić, Marin</creator><creator>Petrich, Gale S.</creator><creator>Joannopoulos, John D.</creator><creator>Kolodziejski, Leslie A.</creator><creator>Ippen, Erich P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20060201</creationdate><title>Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal</title><author>Rakich, Peter T. ; Dahlem, Marcus S. ; Tandon, Sheila ; Ibanescu, Mihai ; Soljačić, Marin ; Petrich, Gale S. ; Joannopoulos, John D. ; Kolodziejski, Leslie A. ; Ippen, Erich P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-41caea6b4dc41db7f745c0917d9332fc845196e7469c47659c4dc6f23ecbcb4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Anisotropy</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Evolution</topic><topic>Experiments</topic><topic>Fabrication</topic><topic>letter</topic><topic>Light</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Propagation</topic><topic>Quantitative research</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rakich, Peter T.</creatorcontrib><creatorcontrib>Dahlem, Marcus S.</creatorcontrib><creatorcontrib>Tandon, Sheila</creatorcontrib><creatorcontrib>Ibanescu, Mihai</creatorcontrib><creatorcontrib>Soljačić, Marin</creatorcontrib><creatorcontrib>Petrich, Gale S.</creatorcontrib><creatorcontrib>Joannopoulos, John D.</creatorcontrib><creatorcontrib>Kolodziejski, Leslie A.</creatorcontrib><creatorcontrib>Ippen, Erich P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rakich, Peter T.</au><au>Dahlem, Marcus S.</au><au>Tandon, Sheila</au><au>Ibanescu, Mihai</au><au>Soljačić, Marin</au><au>Petrich, Gale S.</au><au>Joannopoulos, John D.</au><au>Kolodziejski, Leslie A.</au><au>Ippen, Erich P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2006-02-01</date><risdate>2006</risdate><volume>5</volume><issue>2</issue><spage>93</spage><epage>96</epage><pages>93-96</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Diffraction, a fundamental process in wave physics, leads to spreading of the optical beams as they propagate. However, new photonic crystal (PhC) meta-materials can be nano-engineered to generate extreme anisotropy, resulting in apparent propagation of light without diffraction. This surprising phenomenon, called supercollimation, effectively freezes the spatial width of a light beam inside a PhC, observed over a few isotropic diffraction-lengths
1
,
2
,
3
,
4
,
5
,
6
. However, using such experiments to predict the behaviour for longer propagation lengths is difficult, as a tiny error in a measured width can extrapolate to order unity uncertainty in the width at distances over hundreds of diffraction-lengths. Here, supercollimation is demonstrated in a macroscopic PhC system over centimetre-scale distances, retaining spatial width confinement without the need for waveguides or nonlinearities. Through quantitative studies of the beam evolution in a two-dimensional PhC, we find that supercollimation possesses unexpected but inherent robustness with respect to short-scale disorder such as fabrication roughness, enabling supercollimation over 600 isotropic diffraction-lengths. The effects of disorder are identified through experiments and understood through rigorous simulations. In addition, a supercollimation steering capability is proposed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>16415874</pmid><doi>10.1038/nmat1568</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2006-02, Vol.5 (2), p.93-96 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_743121970 |
source | SpringerLink Journals; Nature |
subjects | Anisotropy Biomaterials Chemistry and Materials Science Condensed Matter Physics Evolution Experiments Fabrication letter Light Materials Science Nanotechnology Optical and Electronic Materials Physics Propagation Quantitative research Simulation |
title | Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T07%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20centimetre-scale%20supercollimation%20in%20a%20large-area%20two-dimensional%20photonic%20crystal&rft.jtitle=Nature%20materials&rft.au=Rakich,%20Peter%20T.&rft.date=2006-02-01&rft.volume=5&rft.issue=2&rft.spage=93&rft.epage=96&rft.pages=93-96&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat1568&rft_dat=%3Cproquest_cross%3E986054411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222767984&rft_id=info:pmid/16415874&rfr_iscdi=true |