Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal

Diffraction, a fundamental process in wave physics, leads to spreading of the optical beams as they propagate. However, new photonic crystal (PhC) meta-materials can be nano-engineered to generate extreme anisotropy, resulting in apparent propagation of light without diffraction. This surprising phe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2006-02, Vol.5 (2), p.93-96
Hauptverfasser: Rakich, Peter T., Dahlem, Marcus S., Tandon, Sheila, Ibanescu, Mihai, Soljačić, Marin, Petrich, Gale S., Joannopoulos, John D., Kolodziejski, Leslie A., Ippen, Erich P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 96
container_issue 2
container_start_page 93
container_title Nature materials
container_volume 5
creator Rakich, Peter T.
Dahlem, Marcus S.
Tandon, Sheila
Ibanescu, Mihai
Soljačić, Marin
Petrich, Gale S.
Joannopoulos, John D.
Kolodziejski, Leslie A.
Ippen, Erich P.
description Diffraction, a fundamental process in wave physics, leads to spreading of the optical beams as they propagate. However, new photonic crystal (PhC) meta-materials can be nano-engineered to generate extreme anisotropy, resulting in apparent propagation of light without diffraction. This surprising phenomenon, called supercollimation, effectively freezes the spatial width of a light beam inside a PhC, observed over a few isotropic diffraction-lengths 1 , 2 , 3 , 4 , 5 , 6 . However, using such experiments to predict the behaviour for longer propagation lengths is difficult, as a tiny error in a measured width can extrapolate to order unity uncertainty in the width at distances over hundreds of diffraction-lengths. Here, supercollimation is demonstrated in a macroscopic PhC system over centimetre-scale distances, retaining spatial width confinement without the need for waveguides or nonlinearities. Through quantitative studies of the beam evolution in a two-dimensional PhC, we find that supercollimation possesses unexpected but inherent robustness with respect to short-scale disorder such as fabrication roughness, enabling supercollimation over 600 isotropic diffraction-lengths. The effects of disorder are identified through experiments and understood through rigorous simulations. In addition, a supercollimation steering capability is proposed.
doi_str_mv 10.1038/nmat1568
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743121970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>986054411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-41caea6b4dc41db7f745c0917d9332fc845196e7469c47659c4dc6f23ecbcb4f3</originalsourceid><addsrcrecordid>eNp90U1LxDAQBuAgiq6r4C-Q4sGPQzVJ06Q9yuIXLHjRm1DS6XS3kk3WpFX890Z2ZUHBSxKYJ2-YDCFHjF4ymhVXdqF7lstii4yYUDIVUtLt9ZkxzvfIfgivlHKW53KX7DEpWF4oMSIv1zDv8L2zswTQ9t0Ce49pAG0wCcMSPThjuhjfOZt0NtGJ0X6Gqfaok_7DpU28YkOsapMs5653toME_GfotTkgO602AQ_X-5g83948Te7T6ePdw-R6mkKmRJ8KBhq1rEUDgjW1apXIgZZMNWWW8RYKkbNSohKyhNhRHtcGZMszhBpq0WZjcrbKXXr3NmDoq0UXAI3RFt0QKiUyxlmpaJSn_0uquOCUR3jyC766wccmQ8U5V1KVhYjofIXAuxA8ttXSx7_ynxWj1fdgqp_BRHq8zhvqBTYbuJ5EBBcrEGLJztBvHvwT9gUDP5fP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222767984</pqid></control><display><type>article</type><title>Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal</title><source>SpringerLink Journals</source><source>Nature</source><creator>Rakich, Peter T. ; Dahlem, Marcus S. ; Tandon, Sheila ; Ibanescu, Mihai ; Soljačić, Marin ; Petrich, Gale S. ; Joannopoulos, John D. ; Kolodziejski, Leslie A. ; Ippen, Erich P.</creator><creatorcontrib>Rakich, Peter T. ; Dahlem, Marcus S. ; Tandon, Sheila ; Ibanescu, Mihai ; Soljačić, Marin ; Petrich, Gale S. ; Joannopoulos, John D. ; Kolodziejski, Leslie A. ; Ippen, Erich P.</creatorcontrib><description>Diffraction, a fundamental process in wave physics, leads to spreading of the optical beams as they propagate. However, new photonic crystal (PhC) meta-materials can be nano-engineered to generate extreme anisotropy, resulting in apparent propagation of light without diffraction. This surprising phenomenon, called supercollimation, effectively freezes the spatial width of a light beam inside a PhC, observed over a few isotropic diffraction-lengths 1 , 2 , 3 , 4 , 5 , 6 . However, using such experiments to predict the behaviour for longer propagation lengths is difficult, as a tiny error in a measured width can extrapolate to order unity uncertainty in the width at distances over hundreds of diffraction-lengths. Here, supercollimation is demonstrated in a macroscopic PhC system over centimetre-scale distances, retaining spatial width confinement without the need for waveguides or nonlinearities. Through quantitative studies of the beam evolution in a two-dimensional PhC, we find that supercollimation possesses unexpected but inherent robustness with respect to short-scale disorder such as fabrication roughness, enabling supercollimation over 600 isotropic diffraction-lengths. The effects of disorder are identified through experiments and understood through rigorous simulations. In addition, a supercollimation steering capability is proposed.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat1568</identifier><identifier>PMID: 16415874</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Anisotropy ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Evolution ; Experiments ; Fabrication ; letter ; Light ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Propagation ; Quantitative research ; Simulation</subject><ispartof>Nature materials, 2006-02, Vol.5 (2), p.93-96</ispartof><rights>Springer Nature Limited 2006</rights><rights>Copyright Nature Publishing Group Feb 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-41caea6b4dc41db7f745c0917d9332fc845196e7469c47659c4dc6f23ecbcb4f3</citedby><cites>FETCH-LOGICAL-c374t-41caea6b4dc41db7f745c0917d9332fc845196e7469c47659c4dc6f23ecbcb4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat1568$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat1568$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16415874$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rakich, Peter T.</creatorcontrib><creatorcontrib>Dahlem, Marcus S.</creatorcontrib><creatorcontrib>Tandon, Sheila</creatorcontrib><creatorcontrib>Ibanescu, Mihai</creatorcontrib><creatorcontrib>Soljačić, Marin</creatorcontrib><creatorcontrib>Petrich, Gale S.</creatorcontrib><creatorcontrib>Joannopoulos, John D.</creatorcontrib><creatorcontrib>Kolodziejski, Leslie A.</creatorcontrib><creatorcontrib>Ippen, Erich P.</creatorcontrib><title>Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Diffraction, a fundamental process in wave physics, leads to spreading of the optical beams as they propagate. However, new photonic crystal (PhC) meta-materials can be nano-engineered to generate extreme anisotropy, resulting in apparent propagation of light without diffraction. This surprising phenomenon, called supercollimation, effectively freezes the spatial width of a light beam inside a PhC, observed over a few isotropic diffraction-lengths 1 , 2 , 3 , 4 , 5 , 6 . However, using such experiments to predict the behaviour for longer propagation lengths is difficult, as a tiny error in a measured width can extrapolate to order unity uncertainty in the width at distances over hundreds of diffraction-lengths. Here, supercollimation is demonstrated in a macroscopic PhC system over centimetre-scale distances, retaining spatial width confinement without the need for waveguides or nonlinearities. Through quantitative studies of the beam evolution in a two-dimensional PhC, we find that supercollimation possesses unexpected but inherent robustness with respect to short-scale disorder such as fabrication roughness, enabling supercollimation over 600 isotropic diffraction-lengths. The effects of disorder are identified through experiments and understood through rigorous simulations. In addition, a supercollimation steering capability is proposed.</description><subject>Anisotropy</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Evolution</subject><subject>Experiments</subject><subject>Fabrication</subject><subject>letter</subject><subject>Light</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Propagation</subject><subject>Quantitative research</subject><subject>Simulation</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp90U1LxDAQBuAgiq6r4C-Q4sGPQzVJ06Q9yuIXLHjRm1DS6XS3kk3WpFX890Z2ZUHBSxKYJ2-YDCFHjF4ymhVXdqF7lstii4yYUDIVUtLt9ZkxzvfIfgivlHKW53KX7DEpWF4oMSIv1zDv8L2zswTQ9t0Ce49pAG0wCcMSPThjuhjfOZt0NtGJ0X6Gqfaok_7DpU28YkOsapMs5653toME_GfotTkgO602AQ_X-5g83948Te7T6ePdw-R6mkKmRJ8KBhq1rEUDgjW1apXIgZZMNWWW8RYKkbNSohKyhNhRHtcGZMszhBpq0WZjcrbKXXr3NmDoq0UXAI3RFt0QKiUyxlmpaJSn_0uquOCUR3jyC766wccmQ8U5V1KVhYjofIXAuxA8ttXSx7_ynxWj1fdgqp_BRHq8zhvqBTYbuJ5EBBcrEGLJztBvHvwT9gUDP5fP</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Rakich, Peter T.</creator><creator>Dahlem, Marcus S.</creator><creator>Tandon, Sheila</creator><creator>Ibanescu, Mihai</creator><creator>Soljačić, Marin</creator><creator>Petrich, Gale S.</creator><creator>Joannopoulos, John D.</creator><creator>Kolodziejski, Leslie A.</creator><creator>Ippen, Erich P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20060201</creationdate><title>Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal</title><author>Rakich, Peter T. ; Dahlem, Marcus S. ; Tandon, Sheila ; Ibanescu, Mihai ; Soljačić, Marin ; Petrich, Gale S. ; Joannopoulos, John D. ; Kolodziejski, Leslie A. ; Ippen, Erich P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-41caea6b4dc41db7f745c0917d9332fc845196e7469c47659c4dc6f23ecbcb4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Anisotropy</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Evolution</topic><topic>Experiments</topic><topic>Fabrication</topic><topic>letter</topic><topic>Light</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Propagation</topic><topic>Quantitative research</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rakich, Peter T.</creatorcontrib><creatorcontrib>Dahlem, Marcus S.</creatorcontrib><creatorcontrib>Tandon, Sheila</creatorcontrib><creatorcontrib>Ibanescu, Mihai</creatorcontrib><creatorcontrib>Soljačić, Marin</creatorcontrib><creatorcontrib>Petrich, Gale S.</creatorcontrib><creatorcontrib>Joannopoulos, John D.</creatorcontrib><creatorcontrib>Kolodziejski, Leslie A.</creatorcontrib><creatorcontrib>Ippen, Erich P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rakich, Peter T.</au><au>Dahlem, Marcus S.</au><au>Tandon, Sheila</au><au>Ibanescu, Mihai</au><au>Soljačić, Marin</au><au>Petrich, Gale S.</au><au>Joannopoulos, John D.</au><au>Kolodziejski, Leslie A.</au><au>Ippen, Erich P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2006-02-01</date><risdate>2006</risdate><volume>5</volume><issue>2</issue><spage>93</spage><epage>96</epage><pages>93-96</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Diffraction, a fundamental process in wave physics, leads to spreading of the optical beams as they propagate. However, new photonic crystal (PhC) meta-materials can be nano-engineered to generate extreme anisotropy, resulting in apparent propagation of light without diffraction. This surprising phenomenon, called supercollimation, effectively freezes the spatial width of a light beam inside a PhC, observed over a few isotropic diffraction-lengths 1 , 2 , 3 , 4 , 5 , 6 . However, using such experiments to predict the behaviour for longer propagation lengths is difficult, as a tiny error in a measured width can extrapolate to order unity uncertainty in the width at distances over hundreds of diffraction-lengths. Here, supercollimation is demonstrated in a macroscopic PhC system over centimetre-scale distances, retaining spatial width confinement without the need for waveguides or nonlinearities. Through quantitative studies of the beam evolution in a two-dimensional PhC, we find that supercollimation possesses unexpected but inherent robustness with respect to short-scale disorder such as fabrication roughness, enabling supercollimation over 600 isotropic diffraction-lengths. The effects of disorder are identified through experiments and understood through rigorous simulations. In addition, a supercollimation steering capability is proposed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>16415874</pmid><doi>10.1038/nmat1568</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2006-02, Vol.5 (2), p.93-96
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_743121970
source SpringerLink Journals; Nature
subjects Anisotropy
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Evolution
Experiments
Fabrication
letter
Light
Materials Science
Nanotechnology
Optical and Electronic Materials
Physics
Propagation
Quantitative research
Simulation
title Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T07%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20centimetre-scale%20supercollimation%20in%20a%20large-area%20two-dimensional%20photonic%20crystal&rft.jtitle=Nature%20materials&rft.au=Rakich,%20Peter%20T.&rft.date=2006-02-01&rft.volume=5&rft.issue=2&rft.spage=93&rft.epage=96&rft.pages=93-96&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat1568&rft_dat=%3Cproquest_cross%3E986054411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222767984&rft_id=info:pmid/16415874&rfr_iscdi=true