Branch-and-cut for combinatorial optimization problems without auxiliary binary variables
Many optimisation problems involve combinatorial constraints on continuous variables. An example of a combinatorial constraint is that at most one variable in a group of nonnegative variables may be positive. Traditionally, in the mathematical programming community, such problems have been modeled a...
Gespeichert in:
Veröffentlicht in: | Knowledge engineering review 2001-03, Vol.16 (1), p.25-39 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39 |
---|---|
container_issue | 1 |
container_start_page | 25 |
container_title | Knowledge engineering review |
container_volume | 16 |
creator | DE FARIAS, I. R. JOHNSON, E. L. NEMHAUSER, G. L. |
description | Many optimisation problems involve combinatorial constraints on continuous variables. An example of a combinatorial constraint is that at most one variable in a group of nonnegative variables may be positive. Traditionally, in the mathematical programming community, such problems have been modeled as mixed-integer programs by
introducing auxiliary binary variables and additional constraints. Because the number of variables and constraints becomes larger and the combinatorial structure is not used to advantage, these mixed-integer programming models may not be solved satisfactorily, except for small instances. Traditionally, constraint programming approaches to such problems keep and use the combinatorial structure, but do not use linear programming bounds in the search for an optimal solution. Here we present a branch-and-cut approach that considers the combinatorial constraints without the introduction of binary variables. We review the development of this approach and show how strong constraints can be derived using ideas from polyhedral combinatorics. To illustrate the ideas, we present a production scheduling model that arises in the manufacture of fibre optic cables. |
doi_str_mv | 10.1017/S0269888901000030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743108296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0269888901000030</cupid><sourcerecordid>1402275921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-a6a089e8aab75394d91cfcc7f871e6e24ec125304a53878c8436444557473d5f3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewiNqwCdmzHzhIqKAjEQzwkVtbUdahLEhc7gcLX46oVSCC8mcWc47kzCO0SfEAwEYd3OMsLKWWBCY6P4jXUIywvUokxX0e9RTtd9DfRVghTjAklmPbQ07GHRk9SaMap7tqkdD7Rrh7ZBlrnLVSJm7W2tp_QWtckM-9GlalD8m7biYs8dHNbWfAfyUKJ5Q2iFZmwjTZKqILZWdU-ejg9uR-cpZfXw_PB0WWqqWRtCjlgWRgJMBKcFmxcEF1qLUopiMlNxowmGaeYAadSSC0ZzRljnAsm6JiXtI_2l__GbK-dCa2qbdCmqqAxrgtKsLipzIo8knu_yKnrfBPDqYwITnhGSITIEtLeheBNqWbe1nEzRbBanFr9OXV00qVjQ2vm3wL4F5ULKrjKh7eKDs8es6ubC1VEnq5mQD3ydvxsfpL8P-ULD2aPaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217515211</pqid></control><display><type>article</type><title>Branch-and-cut for combinatorial optimization problems without auxiliary binary variables</title><source>Cambridge University Press Journals Complete</source><creator>DE FARIAS, I. R. ; JOHNSON, E. L. ; NEMHAUSER, G. L.</creator><creatorcontrib>DE FARIAS, I. R. ; JOHNSON, E. L. ; NEMHAUSER, G. L.</creatorcontrib><description>Many optimisation problems involve combinatorial constraints on continuous variables. An example of a combinatorial constraint is that at most one variable in a group of nonnegative variables may be positive. Traditionally, in the mathematical programming community, such problems have been modeled as mixed-integer programs by
introducing auxiliary binary variables and additional constraints. Because the number of variables and constraints becomes larger and the combinatorial structure is not used to advantage, these mixed-integer programming models may not be solved satisfactorily, except for small instances. Traditionally, constraint programming approaches to such problems keep and use the combinatorial structure, but do not use linear programming bounds in the search for an optimal solution. Here we present a branch-and-cut approach that considers the combinatorial constraints without the introduction of binary variables. We review the development of this approach and show how strong constraints can be derived using ideas from polyhedral combinatorics. To illustrate the ideas, we present a production scheduling model that arises in the manufacture of fibre optic cables.</description><identifier>ISSN: 0269-8889</identifier><identifier>EISSN: 1469-8005</identifier><identifier>DOI: 10.1017/S0269888901000030</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algorithms ; Approximation ; Capital budgeting ; Integer programming ; Linear programming ; Mathematical programming ; Scheduling ; Variables</subject><ispartof>Knowledge engineering review, 2001-03, Vol.16 (1), p.25-39</ispartof><rights>2001 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-a6a089e8aab75394d91cfcc7f871e6e24ec125304a53878c8436444557473d5f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0269888901000030/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>DE FARIAS, I. R.</creatorcontrib><creatorcontrib>JOHNSON, E. L.</creatorcontrib><creatorcontrib>NEMHAUSER, G. L.</creatorcontrib><title>Branch-and-cut for combinatorial optimization problems without auxiliary binary variables</title><title>Knowledge engineering review</title><addtitle>The Knowledge Engineering Review</addtitle><description>Many optimisation problems involve combinatorial constraints on continuous variables. An example of a combinatorial constraint is that at most one variable in a group of nonnegative variables may be positive. Traditionally, in the mathematical programming community, such problems have been modeled as mixed-integer programs by
introducing auxiliary binary variables and additional constraints. Because the number of variables and constraints becomes larger and the combinatorial structure is not used to advantage, these mixed-integer programming models may not be solved satisfactorily, except for small instances. Traditionally, constraint programming approaches to such problems keep and use the combinatorial structure, but do not use linear programming bounds in the search for an optimal solution. Here we present a branch-and-cut approach that considers the combinatorial constraints without the introduction of binary variables. We review the development of this approach and show how strong constraints can be derived using ideas from polyhedral combinatorics. To illustrate the ideas, we present a production scheduling model that arises in the manufacture of fibre optic cables.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Capital budgeting</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Mathematical programming</subject><subject>Scheduling</subject><subject>Variables</subject><issn>0269-8889</issn><issn>1469-8005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtOwzAQRS0EEqXwAewiNqwCdmzHzhIqKAjEQzwkVtbUdahLEhc7gcLX46oVSCC8mcWc47kzCO0SfEAwEYd3OMsLKWWBCY6P4jXUIywvUokxX0e9RTtd9DfRVghTjAklmPbQ07GHRk9SaMap7tqkdD7Rrh7ZBlrnLVSJm7W2tp_QWtckM-9GlalD8m7biYs8dHNbWfAfyUKJ5Q2iFZmwjTZKqILZWdU-ejg9uR-cpZfXw_PB0WWqqWRtCjlgWRgJMBKcFmxcEF1qLUopiMlNxowmGaeYAadSSC0ZzRljnAsm6JiXtI_2l__GbK-dCa2qbdCmqqAxrgtKsLipzIo8knu_yKnrfBPDqYwITnhGSITIEtLeheBNqWbe1nEzRbBanFr9OXV00qVjQ2vm3wL4F5ULKrjKh7eKDs8es6ubC1VEnq5mQD3ydvxsfpL8P-ULD2aPaw</recordid><startdate>20010301</startdate><enddate>20010301</enddate><creator>DE FARIAS, I. R.</creator><creator>JOHNSON, E. L.</creator><creator>NEMHAUSER, G. L.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20010301</creationdate><title>Branch-and-cut for combinatorial optimization problems without auxiliary binary variables</title><author>DE FARIAS, I. R. ; JOHNSON, E. L. ; NEMHAUSER, G. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-a6a089e8aab75394d91cfcc7f871e6e24ec125304a53878c8436444557473d5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Capital budgeting</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Mathematical programming</topic><topic>Scheduling</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DE FARIAS, I. R.</creatorcontrib><creatorcontrib>JOHNSON, E. L.</creatorcontrib><creatorcontrib>NEMHAUSER, G. L.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Knowledge engineering review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DE FARIAS, I. R.</au><au>JOHNSON, E. L.</au><au>NEMHAUSER, G. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Branch-and-cut for combinatorial optimization problems without auxiliary binary variables</atitle><jtitle>Knowledge engineering review</jtitle><addtitle>The Knowledge Engineering Review</addtitle><date>2001-03-01</date><risdate>2001</risdate><volume>16</volume><issue>1</issue><spage>25</spage><epage>39</epage><pages>25-39</pages><issn>0269-8889</issn><eissn>1469-8005</eissn><abstract>Many optimisation problems involve combinatorial constraints on continuous variables. An example of a combinatorial constraint is that at most one variable in a group of nonnegative variables may be positive. Traditionally, in the mathematical programming community, such problems have been modeled as mixed-integer programs by
introducing auxiliary binary variables and additional constraints. Because the number of variables and constraints becomes larger and the combinatorial structure is not used to advantage, these mixed-integer programming models may not be solved satisfactorily, except for small instances. Traditionally, constraint programming approaches to such problems keep and use the combinatorial structure, but do not use linear programming bounds in the search for an optimal solution. Here we present a branch-and-cut approach that considers the combinatorial constraints without the introduction of binary variables. We review the development of this approach and show how strong constraints can be derived using ideas from polyhedral combinatorics. To illustrate the ideas, we present a production scheduling model that arises in the manufacture of fibre optic cables.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0269888901000030</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-8889 |
ispartof | Knowledge engineering review, 2001-03, Vol.16 (1), p.25-39 |
issn | 0269-8889 1469-8005 |
language | eng |
recordid | cdi_proquest_miscellaneous_743108296 |
source | Cambridge University Press Journals Complete |
subjects | Algorithms Approximation Capital budgeting Integer programming Linear programming Mathematical programming Scheduling Variables |
title | Branch-and-cut for combinatorial optimization problems without auxiliary binary variables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Branch-and-cut%20for%20combinatorial%20optimization%20problems%20without%20auxiliary%20binary%20variables&rft.jtitle=Knowledge%20engineering%20review&rft.au=DE%20FARIAS,%20I.%20R.&rft.date=2001-03-01&rft.volume=16&rft.issue=1&rft.spage=25&rft.epage=39&rft.pages=25-39&rft.issn=0269-8889&rft.eissn=1469-8005&rft_id=info:doi/10.1017/S0269888901000030&rft_dat=%3Cproquest_cross%3E1402275921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217515211&rft_id=info:pmid/&rft_cupid=10_1017_S0269888901000030&rfr_iscdi=true |