Square-Free Integers as Ideal Norms

Elaborating on Katzel's result, Zhai obtained a sharp short interval result for the number of ways of expressing a square-free integer as sums of two squares. In this note we view Zhai's decom- position as one by degree 1 prime ideals in the Gaussian field and extend Zhai's approach to a wider range...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2010-04, Vol.26 (4), p.621-628
Hauptverfasser: Kanemitsu, Shigeru, Laurinčikas, Antanas, Ma, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 628
container_issue 4
container_start_page 621
container_title Acta mathematica Sinica. English series
container_volume 26
creator Kanemitsu, Shigeru
Laurinčikas, Antanas
Ma, Jing
description Elaborating on Katzel's result, Zhai obtained a sharp short interval result for the number of ways of expressing a square-free integer as sums of two squares. In this note we view Zhai's decom- position as one by degree 1 prime ideals in the Gaussian field and extend Zhai's approach to a wider range of quadratic fields etc.
doi_str_mv 10.1007/s10114-010-8450-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743077313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>33064635</cqvip_id><sourcerecordid>1964502161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-d1ea550c622dd1bf87e4296104b37b615141b7a4a03388a525b8dede6595a6763</originalsourceid><addsrcrecordid>eNp9kLtOw0AQRVcIJELgA-gsKKgWZrwvu0QRgUgRFEC9WtvjkODYyW5c8PfZyJGQKKhminOvrg5j1wj3CGAeAgKi5IDAM6mAmxM2QilybjSa0-OfKdTn7CKEFYBSOegRu33f9s4Tn3qiZNbuaEE-JC4ks4pck7x2fh0u2VntmkBXxztmn9Onj8kLn789zyaPc16KVO94heSUglKnaVVhUWeGZJprBFkIU2hUKLEwTjoQIsucSlWRVVSRVrly2mgxZndD78Z3257Czq6XoaSmcS11fbBGCjBGoIjkzR9y1fW-jeNsKrTMETRECAeo9F0Inmq78cu18z8WwR6k2UGajdLsQZo1MZMOmRDZNrr4Lf4vdFxTfnXtYhtztnDld71syAoBWmqhxB66Jnas</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236491060</pqid></control><display><type>article</type><title>Square-Free Integers as Ideal Norms</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Kanemitsu, Shigeru ; Laurinčikas, Antanas ; Ma, Jing</creator><creatorcontrib>Kanemitsu, Shigeru ; Laurinčikas, Antanas ; Ma, Jing</creatorcontrib><description>Elaborating on Katzel's result, Zhai obtained a sharp short interval result for the number of ways of expressing a square-free integer as sums of two squares. In this note we view Zhai's decom- position as one by degree 1 prime ideals in the Gaussian field and extend Zhai's approach to a wider range of quadratic fields etc.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-010-8450-7</identifier><language>eng</language><publisher>Heidelberg: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Approximation ; Conformity ; Decomposition ; Mathematical analysis ; Mathematical functions ; Mathematics ; Mathematics and Statistics ; Normal distribution ; Norms ; Studies ; 二次域 ; 平方和 ; 素理想</subject><ispartof>Acta mathematica Sinica. English series, 2010-04, Vol.26 (4), p.621-628</ispartof><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer Berlin Heidelberg 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-d1ea550c622dd1bf87e4296104b37b615141b7a4a03388a525b8dede6595a6763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-010-8450-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-010-8450-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kanemitsu, Shigeru</creatorcontrib><creatorcontrib>Laurinčikas, Antanas</creatorcontrib><creatorcontrib>Ma, Jing</creatorcontrib><title>Square-Free Integers as Ideal Norms</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><addtitle>Acta Mathematica Sinica</addtitle><description>Elaborating on Katzel's result, Zhai obtained a sharp short interval result for the number of ways of expressing a square-free integer as sums of two squares. In this note we view Zhai's decom- position as one by degree 1 prime ideals in the Gaussian field and extend Zhai's approach to a wider range of quadratic fields etc.</description><subject>Approximation</subject><subject>Conformity</subject><subject>Decomposition</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Normal distribution</subject><subject>Norms</subject><subject>Studies</subject><subject>二次域</subject><subject>平方和</subject><subject>素理想</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kLtOw0AQRVcIJELgA-gsKKgWZrwvu0QRgUgRFEC9WtvjkODYyW5c8PfZyJGQKKhminOvrg5j1wj3CGAeAgKi5IDAM6mAmxM2QilybjSa0-OfKdTn7CKEFYBSOegRu33f9s4Tn3qiZNbuaEE-JC4ks4pck7x2fh0u2VntmkBXxztmn9Onj8kLn789zyaPc16KVO94heSUglKnaVVhUWeGZJprBFkIU2hUKLEwTjoQIsucSlWRVVSRVrly2mgxZndD78Z3257Czq6XoaSmcS11fbBGCjBGoIjkzR9y1fW-jeNsKrTMETRECAeo9F0Inmq78cu18z8WwR6k2UGajdLsQZo1MZMOmRDZNrr4Lf4vdFxTfnXtYhtztnDld71syAoBWmqhxB66Jnas</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Kanemitsu, Shigeru</creator><creator>Laurinčikas, Antanas</creator><creator>Ma, Jing</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100401</creationdate><title>Square-Free Integers as Ideal Norms</title><author>Kanemitsu, Shigeru ; Laurinčikas, Antanas ; Ma, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-d1ea550c622dd1bf87e4296104b37b615141b7a4a03388a525b8dede6595a6763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Conformity</topic><topic>Decomposition</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Normal distribution</topic><topic>Norms</topic><topic>Studies</topic><topic>二次域</topic><topic>平方和</topic><topic>素理想</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanemitsu, Shigeru</creatorcontrib><creatorcontrib>Laurinčikas, Antanas</creatorcontrib><creatorcontrib>Ma, Jing</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanemitsu, Shigeru</au><au>Laurinčikas, Antanas</au><au>Ma, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Square-Free Integers as Ideal Norms</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><addtitle>Acta Mathematica Sinica</addtitle><date>2010-04-01</date><risdate>2010</risdate><volume>26</volume><issue>4</issue><spage>621</spage><epage>628</epage><pages>621-628</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>Elaborating on Katzel's result, Zhai obtained a sharp short interval result for the number of ways of expressing a square-free integer as sums of two squares. In this note we view Zhai's decom- position as one by degree 1 prime ideals in the Gaussian field and extend Zhai's approach to a wider range of quadratic fields etc.</abstract><cop>Heidelberg</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-010-8450-7</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-8516
ispartof Acta mathematica Sinica. English series, 2010-04, Vol.26 (4), p.621-628
issn 1439-8516
1439-7617
language eng
recordid cdi_proquest_miscellaneous_743077313
source SpringerLink Journals; Alma/SFX Local Collection
subjects Approximation
Conformity
Decomposition
Mathematical analysis
Mathematical functions
Mathematics
Mathematics and Statistics
Normal distribution
Norms
Studies
二次域
平方和
素理想
title Square-Free Integers as Ideal Norms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A06%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Square-Free%20Integers%20as%20Ideal%20Norms&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Kanemitsu,%20Shigeru&rft.date=2010-04-01&rft.volume=26&rft.issue=4&rft.spage=621&rft.epage=628&rft.pages=621-628&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-010-8450-7&rft_dat=%3Cproquest_cross%3E1964502161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236491060&rft_id=info:pmid/&rft_cqvip_id=33064635&rfr_iscdi=true