On the number of numbers with a given digit sum
We consider the sum of digits function which maps an integer to the sum of it's digits, for example 142 is mapped to 1 + 4 + 2 = 7. This papers examines the question of how many other integers are mapped to a given digit in the range 1 to 10^sup z^. [PUBLICATION ABSTRACT]
Gespeichert in:
Veröffentlicht in: | Scientia magna 2005-01, Vol.1 (1), p.191-196 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 196 |
---|---|
container_issue | 1 |
container_start_page | 191 |
container_title | Scientia magna |
container_volume | 1 |
creator | Perry, Jon |
description | We consider the sum of digits function which maps an integer to the sum of it's digits, for example 142 is mapped to 1 + 4 + 2 = 7. This papers examines the question of how many other integers are mapped to a given digit in the range 1 to 10^sup z^. [PUBLICATION ABSTRACT] |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743072537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A145184233</galeid><sourcerecordid>A145184233</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1367-64c22d45713aa4016e20c34161dbc439179abfdf7b20967364b16e4f374505413</originalsourceid><addsrcrecordid>eNptzk1PwzAMBuAcQGIM_kPEhVMhH06yHqeJL2nSLnCu0tTpMrUpNC38fSJtp2nywdarx5avyIIrpQttmL4htykdGAO9ArUgz7tIpz3SOPc1jnTwpynRvzDtqaVt-MVIm9CGiaa5vyPX3nYJ7099Sb5eXz4378V29_axWW-LlkttCg1OiAaU4dJaYFyjYE4C17ypHciSm9LWvvGmFqzURmqoswEvDSimgMsleTze_R6HnxnTVPUhOew6G3GYU2VAMiOUNFk-nMnDMI8xP1cJwVal0hwyKo6otR1WIfphGq1rMeJouyGiDzlec1B8BULK7J8u-FwN9sFdWPgHpgFogQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>220895614</pqid></control><display><type>article</type><title>On the number of numbers with a given digit sum</title><source>EZB Electronic Journals Library</source><creator>Perry, Jon</creator><creatorcontrib>Perry, Jon</creatorcontrib><description>We consider the sum of digits function which maps an integer to the sum of it's digits, for example 142 is mapped to 1 + 4 + 2 = 7. This papers examines the question of how many other integers are mapped to a given digit in the range 1 to 10^sup z^. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1556-6706</identifier><language>eng</language><publisher>Gallup: Neutrosophic Sets and Systems</publisher><subject>Composition ; Number theory</subject><ispartof>Scientia magna, 2005-01, Vol.1 (1), p.191-196</ispartof><rights>COPYRIGHT 2005 Neutrosophic Sets and Systems</rights><rights>Copyright Science Seeking - distributor 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Perry, Jon</creatorcontrib><title>On the number of numbers with a given digit sum</title><title>Scientia magna</title><description>We consider the sum of digits function which maps an integer to the sum of it's digits, for example 142 is mapped to 1 + 4 + 2 = 7. This papers examines the question of how many other integers are mapped to a given digit in the range 1 to 10^sup z^. [PUBLICATION ABSTRACT]</description><subject>Composition</subject><subject>Number theory</subject><issn>1556-6706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptzk1PwzAMBuAcQGIM_kPEhVMhH06yHqeJL2nSLnCu0tTpMrUpNC38fSJtp2nywdarx5avyIIrpQttmL4htykdGAO9ArUgz7tIpz3SOPc1jnTwpynRvzDtqaVt-MVIm9CGiaa5vyPX3nYJ7099Sb5eXz4378V29_axWW-LlkttCg1OiAaU4dJaYFyjYE4C17ypHciSm9LWvvGmFqzURmqoswEvDSimgMsleTze_R6HnxnTVPUhOew6G3GYU2VAMiOUNFk-nMnDMI8xP1cJwVal0hwyKo6otR1WIfphGq1rMeJouyGiDzlec1B8BULK7J8u-FwN9sFdWPgHpgFogQ</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Perry, Jon</creator><general>Neutrosophic Sets and Systems</general><general>Science Seeking - distributor</general><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SC</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M0N</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20050101</creationdate><title>On the number of numbers with a given digit sum</title><author>Perry, Jon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1367-64c22d45713aa4016e20c34161dbc439179abfdf7b20967364b16e4f374505413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Composition</topic><topic>Number theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perry, Jon</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Computer and Information Systems Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Scientia magna</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perry, Jon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the number of numbers with a given digit sum</atitle><jtitle>Scientia magna</jtitle><date>2005-01-01</date><risdate>2005</risdate><volume>1</volume><issue>1</issue><spage>191</spage><epage>196</epage><pages>191-196</pages><issn>1556-6706</issn><abstract>We consider the sum of digits function which maps an integer to the sum of it's digits, for example 142 is mapped to 1 + 4 + 2 = 7. This papers examines the question of how many other integers are mapped to a given digit in the range 1 to 10^sup z^. [PUBLICATION ABSTRACT]</abstract><cop>Gallup</cop><pub>Neutrosophic Sets and Systems</pub><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1556-6706 |
ispartof | Scientia magna, 2005-01, Vol.1 (1), p.191-196 |
issn | 1556-6706 |
language | eng |
recordid | cdi_proquest_miscellaneous_743072537 |
source | EZB Electronic Journals Library |
subjects | Composition Number theory |
title | On the number of numbers with a given digit sum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20number%20of%20numbers%20with%20a%20given%20digit%20sum&rft.jtitle=Scientia%20magna&rft.au=Perry,%20Jon&rft.date=2005-01-01&rft.volume=1&rft.issue=1&rft.spage=191&rft.epage=196&rft.pages=191-196&rft.issn=1556-6706&rft_id=info:doi/&rft_dat=%3Cgale_proqu%3EA145184233%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=220895614&rft_id=info:pmid/&rft_galeid=A145184233&rfr_iscdi=true |