Acid-base equilibrium of the Schiff base in bacteriorhodopsin

Aqueous suspensions of dark-adapted bacteriorhodopsin (bR560) in the purple membrane of Halobacterium halobium are exposed to rapid jumps to high pH. Optical and resonance Raman measurements are carried out by using flow and stationary methods. Above pH congruent to 11.5 bR560 starts to be reversibl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1982-09, Vol.21 (20), p.4953-4959
Hauptverfasser: Druckmann, S, Ottolenghi, M, Pande, A, Pande, J, Callender, R. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4959
container_issue 20
container_start_page 4953
container_title Biochemistry (Easton)
container_volume 21
creator Druckmann, S
Ottolenghi, M
Pande, A
Pande, J
Callender, R. H
description Aqueous suspensions of dark-adapted bacteriorhodopsin (bR560) in the purple membrane of Halobacterium halobium are exposed to rapid jumps to high pH. Optical and resonance Raman measurements are carried out by using flow and stationary methods. Above pH congruent to 11.5 bR560 starts to be reversibly converted to a species absorbing at 460 nm (bR460) characterized by an unprotonated Schiff base chromophore. Above pH congruent to 13.0 bleaching takes place, first reversibly and subsequently irreversibly, to a species absorbing around 365 nm (bR365). This process competes with the formation of bR460. The pKa corresponding to the equilibrium (equation in text) is determined as 13.3 +/- 0.3. The value of the corresponding association rate constant determined from the reverse jumps (from pH 12.67 to pH 10 and 9.2) is ka = (3.5 +/- 0.5) X 10(11) M-1 s-1. Thus, starting with bR at pH 12.67 the reprotonation process is diffusion controlled as observed for homogeneous acid-base equilibria. The observed rate of dissociation when jumping from pH 6.5 to 12-13 is slower than that predicted by including the equilibrium (equation in text) The results imply that the Schiff base is titratable in the dark, but its accessibility to external OH- ions is limited. The limitations in the significance of the "apparent" value of pKa = 13.3 observed for the Schiff base titration are discussed in light of possible alterations in the structure of bR resulting from the parallel titration of other protein groups. It is suggested that a light-induced pKa change of at least nine units takes place during the photocycle of light-adapted bR.
doi_str_mv 10.1021/bi00263a019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_74287264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>74287264</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-287cbb5fd92b398dfb2b9b5bd0881561974d0051f80b5bffad251eae28229b23</originalsourceid><addsrcrecordid>eNqFkM1LAzEUxIMotVZPnoU96UFWX7LJbnLwUIpWoX7RHryFZDehqW23TXZB_3ujLcWD4Gl4b37MwCB0iuEKA8HX2gGQPFOAxR7qYkYgpUKwfdQFgDwlIodDdBTCLJ4UCtpBnQJnnFPoopt-6apUq2ASs27d3Gnv2kVS26SZmmRcTp21yY_tllHLxnhX-2ld1avglsfowKp5MCdb7aHJ3e1kcJ-OnocPg_4oVRlnTUp4UWrNbCWIzgSvrCZaaKYr4ByzHIuCVgAMWw7xa62qCMNGGcIJEZpkPXS-iV35et2a0MiFC6WZz9XS1G2QBY0NJKf_gpgxmnMqIni5AUtfh-CNlSvvFsp_Sgzye1T5a9RIn21jW70w1Y7drhj9dOO70JiPna38u8yLrGBy8jKWr6O3JzJ5xHIY-YsNr8ogZ3Xrl3G8P5u_AFcrjEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15546849</pqid></control><display><type>article</type><title>Acid-base equilibrium of the Schiff base in bacteriorhodopsin</title><source>MEDLINE</source><source>ACS Publications</source><creator>Druckmann, S ; Ottolenghi, M ; Pande, A ; Pande, J ; Callender, R. H</creator><creatorcontrib>Druckmann, S ; Ottolenghi, M ; Pande, A ; Pande, J ; Callender, R. H</creatorcontrib><description>Aqueous suspensions of dark-adapted bacteriorhodopsin (bR560) in the purple membrane of Halobacterium halobium are exposed to rapid jumps to high pH. Optical and resonance Raman measurements are carried out by using flow and stationary methods. Above pH congruent to 11.5 bR560 starts to be reversibly converted to a species absorbing at 460 nm (bR460) characterized by an unprotonated Schiff base chromophore. Above pH congruent to 13.0 bleaching takes place, first reversibly and subsequently irreversibly, to a species absorbing around 365 nm (bR365). This process competes with the formation of bR460. The pKa corresponding to the equilibrium (equation in text) is determined as 13.3 +/- 0.3. The value of the corresponding association rate constant determined from the reverse jumps (from pH 12.67 to pH 10 and 9.2) is ka = (3.5 +/- 0.5) X 10(11) M-1 s-1. Thus, starting with bR at pH 12.67 the reprotonation process is diffusion controlled as observed for homogeneous acid-base equilibria. The observed rate of dissociation when jumping from pH 6.5 to 12-13 is slower than that predicted by including the equilibrium (equation in text) The results imply that the Schiff base is titratable in the dark, but its accessibility to external OH- ions is limited. The limitations in the significance of the "apparent" value of pKa = 13.3 observed for the Schiff base titration are discussed in light of possible alterations in the structure of bR resulting from the parallel titration of other protein groups. It is suggested that a light-induced pKa change of at least nine units takes place during the photocycle of light-adapted bR.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi00263a019</identifier><identifier>PMID: 7138840</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acid-Base Equilibrium ; Adaptation, Physiological ; Bacteriorhodopsins - physiology ; Carotenoids - physiology ; Darkness ; Halobacterium ; Halobacterium halobium ; Hydrogen-Ion Concentration ; Light ; Models, Chemical ; Schiff Bases</subject><ispartof>Biochemistry (Easton), 1982-09, Vol.21 (20), p.4953-4959</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-287cbb5fd92b398dfb2b9b5bd0881561974d0051f80b5bffad251eae28229b23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi00263a019$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi00263a019$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7138840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Druckmann, S</creatorcontrib><creatorcontrib>Ottolenghi, M</creatorcontrib><creatorcontrib>Pande, A</creatorcontrib><creatorcontrib>Pande, J</creatorcontrib><creatorcontrib>Callender, R. H</creatorcontrib><title>Acid-base equilibrium of the Schiff base in bacteriorhodopsin</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Aqueous suspensions of dark-adapted bacteriorhodopsin (bR560) in the purple membrane of Halobacterium halobium are exposed to rapid jumps to high pH. Optical and resonance Raman measurements are carried out by using flow and stationary methods. Above pH congruent to 11.5 bR560 starts to be reversibly converted to a species absorbing at 460 nm (bR460) characterized by an unprotonated Schiff base chromophore. Above pH congruent to 13.0 bleaching takes place, first reversibly and subsequently irreversibly, to a species absorbing around 365 nm (bR365). This process competes with the formation of bR460. The pKa corresponding to the equilibrium (equation in text) is determined as 13.3 +/- 0.3. The value of the corresponding association rate constant determined from the reverse jumps (from pH 12.67 to pH 10 and 9.2) is ka = (3.5 +/- 0.5) X 10(11) M-1 s-1. Thus, starting with bR at pH 12.67 the reprotonation process is diffusion controlled as observed for homogeneous acid-base equilibria. The observed rate of dissociation when jumping from pH 6.5 to 12-13 is slower than that predicted by including the equilibrium (equation in text) The results imply that the Schiff base is titratable in the dark, but its accessibility to external OH- ions is limited. The limitations in the significance of the "apparent" value of pKa = 13.3 observed for the Schiff base titration are discussed in light of possible alterations in the structure of bR resulting from the parallel titration of other protein groups. It is suggested that a light-induced pKa change of at least nine units takes place during the photocycle of light-adapted bR.</description><subject>Acid-Base Equilibrium</subject><subject>Adaptation, Physiological</subject><subject>Bacteriorhodopsins - physiology</subject><subject>Carotenoids - physiology</subject><subject>Darkness</subject><subject>Halobacterium</subject><subject>Halobacterium halobium</subject><subject>Hydrogen-Ion Concentration</subject><subject>Light</subject><subject>Models, Chemical</subject><subject>Schiff Bases</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1LAzEUxIMotVZPnoU96UFWX7LJbnLwUIpWoX7RHryFZDehqW23TXZB_3ujLcWD4Gl4b37MwCB0iuEKA8HX2gGQPFOAxR7qYkYgpUKwfdQFgDwlIodDdBTCLJ4UCtpBnQJnnFPoopt-6apUq2ASs27d3Gnv2kVS26SZmmRcTp21yY_tllHLxnhX-2ld1avglsfowKp5MCdb7aHJ3e1kcJ-OnocPg_4oVRlnTUp4UWrNbCWIzgSvrCZaaKYr4ByzHIuCVgAMWw7xa62qCMNGGcIJEZpkPXS-iV35et2a0MiFC6WZz9XS1G2QBY0NJKf_gpgxmnMqIni5AUtfh-CNlSvvFsp_Sgzye1T5a9RIn21jW70w1Y7drhj9dOO70JiPna38u8yLrGBy8jKWr6O3JzJ5xHIY-YsNr8ogZ3Xrl3G8P5u_AFcrjEs</recordid><startdate>19820928</startdate><enddate>19820928</enddate><creator>Druckmann, S</creator><creator>Ottolenghi, M</creator><creator>Pande, A</creator><creator>Pande, J</creator><creator>Callender, R. H</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>19820928</creationdate><title>Acid-base equilibrium of the Schiff base in bacteriorhodopsin</title><author>Druckmann, S ; Ottolenghi, M ; Pande, A ; Pande, J ; Callender, R. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-287cbb5fd92b398dfb2b9b5bd0881561974d0051f80b5bffad251eae28229b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>Acid-Base Equilibrium</topic><topic>Adaptation, Physiological</topic><topic>Bacteriorhodopsins - physiology</topic><topic>Carotenoids - physiology</topic><topic>Darkness</topic><topic>Halobacterium</topic><topic>Halobacterium halobium</topic><topic>Hydrogen-Ion Concentration</topic><topic>Light</topic><topic>Models, Chemical</topic><topic>Schiff Bases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Druckmann, S</creatorcontrib><creatorcontrib>Ottolenghi, M</creatorcontrib><creatorcontrib>Pande, A</creatorcontrib><creatorcontrib>Pande, J</creatorcontrib><creatorcontrib>Callender, R. H</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Druckmann, S</au><au>Ottolenghi, M</au><au>Pande, A</au><au>Pande, J</au><au>Callender, R. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acid-base equilibrium of the Schiff base in bacteriorhodopsin</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>1982-09-28</date><risdate>1982</risdate><volume>21</volume><issue>20</issue><spage>4953</spage><epage>4959</epage><pages>4953-4959</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Aqueous suspensions of dark-adapted bacteriorhodopsin (bR560) in the purple membrane of Halobacterium halobium are exposed to rapid jumps to high pH. Optical and resonance Raman measurements are carried out by using flow and stationary methods. Above pH congruent to 11.5 bR560 starts to be reversibly converted to a species absorbing at 460 nm (bR460) characterized by an unprotonated Schiff base chromophore. Above pH congruent to 13.0 bleaching takes place, first reversibly and subsequently irreversibly, to a species absorbing around 365 nm (bR365). This process competes with the formation of bR460. The pKa corresponding to the equilibrium (equation in text) is determined as 13.3 +/- 0.3. The value of the corresponding association rate constant determined from the reverse jumps (from pH 12.67 to pH 10 and 9.2) is ka = (3.5 +/- 0.5) X 10(11) M-1 s-1. Thus, starting with bR at pH 12.67 the reprotonation process is diffusion controlled as observed for homogeneous acid-base equilibria. The observed rate of dissociation when jumping from pH 6.5 to 12-13 is slower than that predicted by including the equilibrium (equation in text) The results imply that the Schiff base is titratable in the dark, but its accessibility to external OH- ions is limited. The limitations in the significance of the "apparent" value of pKa = 13.3 observed for the Schiff base titration are discussed in light of possible alterations in the structure of bR resulting from the parallel titration of other protein groups. It is suggested that a light-induced pKa change of at least nine units takes place during the photocycle of light-adapted bR.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>7138840</pmid><doi>10.1021/bi00263a019</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 1982-09, Vol.21 (20), p.4953-4959
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_74287264
source MEDLINE; ACS Publications
subjects Acid-Base Equilibrium
Adaptation, Physiological
Bacteriorhodopsins - physiology
Carotenoids - physiology
Darkness
Halobacterium
Halobacterium halobium
Hydrogen-Ion Concentration
Light
Models, Chemical
Schiff Bases
title Acid-base equilibrium of the Schiff base in bacteriorhodopsin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acid-base%20equilibrium%20of%20the%20Schiff%20base%20in%20bacteriorhodopsin&rft.jtitle=Biochemistry%20(Easton)&rft.au=Druckmann,%20S&rft.date=1982-09-28&rft.volume=21&rft.issue=20&rft.spage=4953&rft.epage=4959&rft.pages=4953-4959&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi00263a019&rft_dat=%3Cproquest_cross%3E74287264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15546849&rft_id=info:pmid/7138840&rfr_iscdi=true