Spatial organization and fine structure of the cortical filament layer in normal locomoting Amoeba proteus
The fine structural organization of a cortical filament layer in normal locomoting Amoeba proteus was demonstrated using improved fixation and embedding techniques. Best results were obtained after application of PIPES-buffered glutaraldehyde in connection with substances known to prevent the depoly...
Gespeichert in:
Veröffentlicht in: | Cell and tissue research 1982, Vol.221 (3), p.505-509 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 509 |
---|---|
container_issue | 3 |
container_start_page | 505 |
container_title | Cell and tissue research |
container_volume | 221 |
creator | Stockem, W Hoffmann, H U Gawlitta, W |
description | The fine structural organization of a cortical filament layer in normal locomoting Amoeba proteus was demonstrated using improved fixation and embedding techniques. Best results were obtained after application of PIPES-buffered glutaraldehyde in connection with substances known to prevent the depolymerization of F-actin, followed by careful dehydration and freeze-substitution. The filament layer is continuous along the entire surface; it exhibits a varying thickness depending on the cell polarity, measuring several nm in advancing regions and 0.5-1 micron in retracting ones. Two different types of filaments are responsible for the construction of the layer: randomly distributed thin (actin) filaments forming an unordered meshwork beneath the plasma membrane, and thick (myosin) filaments mostly restricted to the uroid region in close association with F-actin. The cortical filament layer generates the motive force for amoeboid movement by contraction at posterior cell regions and induces a pressure flow that continues between the uroid with a high hydrostatic pressure and advancing pseudopodia with low one. The local destabilization of the cell surface as a precondition for the formation of pseudopodia is enabled by the detachment of the cortical filament layer from the plasma membrane. This results in morphological changes by the active separation of peripheral hyaloplasmic and central granuloplasmic regions. |
doi_str_mv | 10.1007/bf00215699 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73916910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15407213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-67d741cc699b0ee39bd4b7597f7c5a681e46cd06cb75767f375c5b90759f7bba3</originalsourceid><addsrcrecordid>eNqFkb1LBDEQxYMoen409kIqC2F1ctlNLqUefsGBhQp2S5JNzhy7yZlkC_3rjdxpazXMzI83vHkInRK4JAD8SlmAKWmYEDtoQmo6rWDGZ7toAhSmFWfs7QAdprQCIDVjYh_tcyJmooYJWj2vZXayxyEupXdfpQkeS99h67zBKcdR5zEaHCzO7wbrELPThbeul4PxGffy00TsPPYhDmXRBx2GkJ1f4ushGCXxOoZsxnSM9qzskznZ1iP0enf7Mn-oFk_3j_PrRaUpbXLFeMdronVxo8AYKlRXK94IbrluJJsRUzPdAdNlyBm3lDe6UQIKYrlSkh6h841uufsxmpTbwSVt-l56E8bUcioIEwT-BUlTA58SWsCLDahjSCka266jG2T8bAm0Pwm0N3e_CRT4bKs6qsF0f-j25fQbRMeCGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15407213</pqid></control><display><type>article</type><title>Spatial organization and fine structure of the cortical filament layer in normal locomoting Amoeba proteus</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Stockem, W ; Hoffmann, H U ; Gawlitta, W</creator><creatorcontrib>Stockem, W ; Hoffmann, H U ; Gawlitta, W</creatorcontrib><description>The fine structural organization of a cortical filament layer in normal locomoting Amoeba proteus was demonstrated using improved fixation and embedding techniques. Best results were obtained after application of PIPES-buffered glutaraldehyde in connection with substances known to prevent the depolymerization of F-actin, followed by careful dehydration and freeze-substitution. The filament layer is continuous along the entire surface; it exhibits a varying thickness depending on the cell polarity, measuring several nm in advancing regions and 0.5-1 micron in retracting ones. Two different types of filaments are responsible for the construction of the layer: randomly distributed thin (actin) filaments forming an unordered meshwork beneath the plasma membrane, and thick (myosin) filaments mostly restricted to the uroid region in close association with F-actin. The cortical filament layer generates the motive force for amoeboid movement by contraction at posterior cell regions and induces a pressure flow that continues between the uroid with a high hydrostatic pressure and advancing pseudopodia with low one. The local destabilization of the cell surface as a precondition for the formation of pseudopodia is enabled by the detachment of the cortical filament layer from the plasma membrane. This results in morphological changes by the active separation of peripheral hyaloplasmic and central granuloplasmic regions.</description><identifier>ISSN: 0302-766X</identifier><identifier>EISSN: 1432-0878</identifier><identifier>DOI: 10.1007/bf00215699</identifier><identifier>PMID: 7198940</identifier><language>eng</language><publisher>Germany</publisher><subject>Amoeba - physiology ; Amoeba - ultrastructure ; Amoeba proteus ; Animals ; Cytoplasmic Streaming ; Cytoskeleton - ultrastructure ; Fixatives ; Microscopy, Electron ; Movement</subject><ispartof>Cell and tissue research, 1982, Vol.221 (3), p.505-509</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-67d741cc699b0ee39bd4b7597f7c5a681e46cd06cb75767f375c5b90759f7bba3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7198940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stockem, W</creatorcontrib><creatorcontrib>Hoffmann, H U</creatorcontrib><creatorcontrib>Gawlitta, W</creatorcontrib><title>Spatial organization and fine structure of the cortical filament layer in normal locomoting Amoeba proteus</title><title>Cell and tissue research</title><addtitle>Cell Tissue Res</addtitle><description>The fine structural organization of a cortical filament layer in normal locomoting Amoeba proteus was demonstrated using improved fixation and embedding techniques. Best results were obtained after application of PIPES-buffered glutaraldehyde in connection with substances known to prevent the depolymerization of F-actin, followed by careful dehydration and freeze-substitution. The filament layer is continuous along the entire surface; it exhibits a varying thickness depending on the cell polarity, measuring several nm in advancing regions and 0.5-1 micron in retracting ones. Two different types of filaments are responsible for the construction of the layer: randomly distributed thin (actin) filaments forming an unordered meshwork beneath the plasma membrane, and thick (myosin) filaments mostly restricted to the uroid region in close association with F-actin. The cortical filament layer generates the motive force for amoeboid movement by contraction at posterior cell regions and induces a pressure flow that continues between the uroid with a high hydrostatic pressure and advancing pseudopodia with low one. The local destabilization of the cell surface as a precondition for the formation of pseudopodia is enabled by the detachment of the cortical filament layer from the plasma membrane. This results in morphological changes by the active separation of peripheral hyaloplasmic and central granuloplasmic regions.</description><subject>Amoeba - physiology</subject><subject>Amoeba - ultrastructure</subject><subject>Amoeba proteus</subject><subject>Animals</subject><subject>Cytoplasmic Streaming</subject><subject>Cytoskeleton - ultrastructure</subject><subject>Fixatives</subject><subject>Microscopy, Electron</subject><subject>Movement</subject><issn>0302-766X</issn><issn>1432-0878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb1LBDEQxYMoen409kIqC2F1ctlNLqUefsGBhQp2S5JNzhy7yZlkC_3rjdxpazXMzI83vHkInRK4JAD8SlmAKWmYEDtoQmo6rWDGZ7toAhSmFWfs7QAdprQCIDVjYh_tcyJmooYJWj2vZXayxyEupXdfpQkeS99h67zBKcdR5zEaHCzO7wbrELPThbeul4PxGffy00TsPPYhDmXRBx2GkJ1f4ushGCXxOoZsxnSM9qzskznZ1iP0enf7Mn-oFk_3j_PrRaUpbXLFeMdronVxo8AYKlRXK94IbrluJJsRUzPdAdNlyBm3lDe6UQIKYrlSkh6h841uufsxmpTbwSVt-l56E8bUcioIEwT-BUlTA58SWsCLDahjSCka266jG2T8bAm0Pwm0N3e_CRT4bKs6qsF0f-j25fQbRMeCGQ</recordid><startdate>1982</startdate><enddate>1982</enddate><creator>Stockem, W</creator><creator>Hoffmann, H U</creator><creator>Gawlitta, W</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>1982</creationdate><title>Spatial organization and fine structure of the cortical filament layer in normal locomoting Amoeba proteus</title><author>Stockem, W ; Hoffmann, H U ; Gawlitta, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-67d741cc699b0ee39bd4b7597f7c5a681e46cd06cb75767f375c5b90759f7bba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>Amoeba - physiology</topic><topic>Amoeba - ultrastructure</topic><topic>Amoeba proteus</topic><topic>Animals</topic><topic>Cytoplasmic Streaming</topic><topic>Cytoskeleton - ultrastructure</topic><topic>Fixatives</topic><topic>Microscopy, Electron</topic><topic>Movement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stockem, W</creatorcontrib><creatorcontrib>Hoffmann, H U</creatorcontrib><creatorcontrib>Gawlitta, W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Cell and tissue research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stockem, W</au><au>Hoffmann, H U</au><au>Gawlitta, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial organization and fine structure of the cortical filament layer in normal locomoting Amoeba proteus</atitle><jtitle>Cell and tissue research</jtitle><addtitle>Cell Tissue Res</addtitle><date>1982</date><risdate>1982</risdate><volume>221</volume><issue>3</issue><spage>505</spage><epage>509</epage><pages>505-509</pages><issn>0302-766X</issn><eissn>1432-0878</eissn><abstract>The fine structural organization of a cortical filament layer in normal locomoting Amoeba proteus was demonstrated using improved fixation and embedding techniques. Best results were obtained after application of PIPES-buffered glutaraldehyde in connection with substances known to prevent the depolymerization of F-actin, followed by careful dehydration and freeze-substitution. The filament layer is continuous along the entire surface; it exhibits a varying thickness depending on the cell polarity, measuring several nm in advancing regions and 0.5-1 micron in retracting ones. Two different types of filaments are responsible for the construction of the layer: randomly distributed thin (actin) filaments forming an unordered meshwork beneath the plasma membrane, and thick (myosin) filaments mostly restricted to the uroid region in close association with F-actin. The cortical filament layer generates the motive force for amoeboid movement by contraction at posterior cell regions and induces a pressure flow that continues between the uroid with a high hydrostatic pressure and advancing pseudopodia with low one. The local destabilization of the cell surface as a precondition for the formation of pseudopodia is enabled by the detachment of the cortical filament layer from the plasma membrane. This results in morphological changes by the active separation of peripheral hyaloplasmic and central granuloplasmic regions.</abstract><cop>Germany</cop><pmid>7198940</pmid><doi>10.1007/bf00215699</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-766X |
ispartof | Cell and tissue research, 1982, Vol.221 (3), p.505-509 |
issn | 0302-766X 1432-0878 |
language | eng |
recordid | cdi_proquest_miscellaneous_73916910 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Amoeba - physiology Amoeba - ultrastructure Amoeba proteus Animals Cytoplasmic Streaming Cytoskeleton - ultrastructure Fixatives Microscopy, Electron Movement |
title | Spatial organization and fine structure of the cortical filament layer in normal locomoting Amoeba proteus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20organization%20and%20fine%20structure%20of%20the%20cortical%20filament%20layer%20in%20normal%20locomoting%20Amoeba%20proteus&rft.jtitle=Cell%20and%20tissue%20research&rft.au=Stockem,%20W&rft.date=1982&rft.volume=221&rft.issue=3&rft.spage=505&rft.epage=509&rft.pages=505-509&rft.issn=0302-766X&rft.eissn=1432-0878&rft_id=info:doi/10.1007/bf00215699&rft_dat=%3Cproquest_cross%3E15407213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15407213&rft_id=info:pmid/7198940&rfr_iscdi=true |