Spatial organization and fine structure of the cortical filament layer in normal locomoting Amoeba proteus

The fine structural organization of a cortical filament layer in normal locomoting Amoeba proteus was demonstrated using improved fixation and embedding techniques. Best results were obtained after application of PIPES-buffered glutaraldehyde in connection with substances known to prevent the depoly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell and tissue research 1982, Vol.221 (3), p.505-509
Hauptverfasser: Stockem, W, Hoffmann, H U, Gawlitta, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 509
container_issue 3
container_start_page 505
container_title Cell and tissue research
container_volume 221
creator Stockem, W
Hoffmann, H U
Gawlitta, W
description The fine structural organization of a cortical filament layer in normal locomoting Amoeba proteus was demonstrated using improved fixation and embedding techniques. Best results were obtained after application of PIPES-buffered glutaraldehyde in connection with substances known to prevent the depolymerization of F-actin, followed by careful dehydration and freeze-substitution. The filament layer is continuous along the entire surface; it exhibits a varying thickness depending on the cell polarity, measuring several nm in advancing regions and 0.5-1 micron in retracting ones. Two different types of filaments are responsible for the construction of the layer: randomly distributed thin (actin) filaments forming an unordered meshwork beneath the plasma membrane, and thick (myosin) filaments mostly restricted to the uroid region in close association with F-actin. The cortical filament layer generates the motive force for amoeboid movement by contraction at posterior cell regions and induces a pressure flow that continues between the uroid with a high hydrostatic pressure and advancing pseudopodia with low one. The local destabilization of the cell surface as a precondition for the formation of pseudopodia is enabled by the detachment of the cortical filament layer from the plasma membrane. This results in morphological changes by the active separation of peripheral hyaloplasmic and central granuloplasmic regions.
doi_str_mv 10.1007/bf00215699
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73916910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15407213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-67d741cc699b0ee39bd4b7597f7c5a681e46cd06cb75767f375c5b90759f7bba3</originalsourceid><addsrcrecordid>eNqFkb1LBDEQxYMoen409kIqC2F1ctlNLqUefsGBhQp2S5JNzhy7yZlkC_3rjdxpazXMzI83vHkInRK4JAD8SlmAKWmYEDtoQmo6rWDGZ7toAhSmFWfs7QAdprQCIDVjYh_tcyJmooYJWj2vZXayxyEupXdfpQkeS99h67zBKcdR5zEaHCzO7wbrELPThbeul4PxGffy00TsPPYhDmXRBx2GkJ1f4ushGCXxOoZsxnSM9qzskznZ1iP0enf7Mn-oFk_3j_PrRaUpbXLFeMdronVxo8AYKlRXK94IbrluJJsRUzPdAdNlyBm3lDe6UQIKYrlSkh6h841uufsxmpTbwSVt-l56E8bUcioIEwT-BUlTA58SWsCLDahjSCka266jG2T8bAm0Pwm0N3e_CRT4bKs6qsF0f-j25fQbRMeCGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15407213</pqid></control><display><type>article</type><title>Spatial organization and fine structure of the cortical filament layer in normal locomoting Amoeba proteus</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Stockem, W ; Hoffmann, H U ; Gawlitta, W</creator><creatorcontrib>Stockem, W ; Hoffmann, H U ; Gawlitta, W</creatorcontrib><description>The fine structural organization of a cortical filament layer in normal locomoting Amoeba proteus was demonstrated using improved fixation and embedding techniques. Best results were obtained after application of PIPES-buffered glutaraldehyde in connection with substances known to prevent the depolymerization of F-actin, followed by careful dehydration and freeze-substitution. The filament layer is continuous along the entire surface; it exhibits a varying thickness depending on the cell polarity, measuring several nm in advancing regions and 0.5-1 micron in retracting ones. Two different types of filaments are responsible for the construction of the layer: randomly distributed thin (actin) filaments forming an unordered meshwork beneath the plasma membrane, and thick (myosin) filaments mostly restricted to the uroid region in close association with F-actin. The cortical filament layer generates the motive force for amoeboid movement by contraction at posterior cell regions and induces a pressure flow that continues between the uroid with a high hydrostatic pressure and advancing pseudopodia with low one. The local destabilization of the cell surface as a precondition for the formation of pseudopodia is enabled by the detachment of the cortical filament layer from the plasma membrane. This results in morphological changes by the active separation of peripheral hyaloplasmic and central granuloplasmic regions.</description><identifier>ISSN: 0302-766X</identifier><identifier>EISSN: 1432-0878</identifier><identifier>DOI: 10.1007/bf00215699</identifier><identifier>PMID: 7198940</identifier><language>eng</language><publisher>Germany</publisher><subject>Amoeba - physiology ; Amoeba - ultrastructure ; Amoeba proteus ; Animals ; Cytoplasmic Streaming ; Cytoskeleton - ultrastructure ; Fixatives ; Microscopy, Electron ; Movement</subject><ispartof>Cell and tissue research, 1982, Vol.221 (3), p.505-509</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-67d741cc699b0ee39bd4b7597f7c5a681e46cd06cb75767f375c5b90759f7bba3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7198940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stockem, W</creatorcontrib><creatorcontrib>Hoffmann, H U</creatorcontrib><creatorcontrib>Gawlitta, W</creatorcontrib><title>Spatial organization and fine structure of the cortical filament layer in normal locomoting Amoeba proteus</title><title>Cell and tissue research</title><addtitle>Cell Tissue Res</addtitle><description>The fine structural organization of a cortical filament layer in normal locomoting Amoeba proteus was demonstrated using improved fixation and embedding techniques. Best results were obtained after application of PIPES-buffered glutaraldehyde in connection with substances known to prevent the depolymerization of F-actin, followed by careful dehydration and freeze-substitution. The filament layer is continuous along the entire surface; it exhibits a varying thickness depending on the cell polarity, measuring several nm in advancing regions and 0.5-1 micron in retracting ones. Two different types of filaments are responsible for the construction of the layer: randomly distributed thin (actin) filaments forming an unordered meshwork beneath the plasma membrane, and thick (myosin) filaments mostly restricted to the uroid region in close association with F-actin. The cortical filament layer generates the motive force for amoeboid movement by contraction at posterior cell regions and induces a pressure flow that continues between the uroid with a high hydrostatic pressure and advancing pseudopodia with low one. The local destabilization of the cell surface as a precondition for the formation of pseudopodia is enabled by the detachment of the cortical filament layer from the plasma membrane. This results in morphological changes by the active separation of peripheral hyaloplasmic and central granuloplasmic regions.</description><subject>Amoeba - physiology</subject><subject>Amoeba - ultrastructure</subject><subject>Amoeba proteus</subject><subject>Animals</subject><subject>Cytoplasmic Streaming</subject><subject>Cytoskeleton - ultrastructure</subject><subject>Fixatives</subject><subject>Microscopy, Electron</subject><subject>Movement</subject><issn>0302-766X</issn><issn>1432-0878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb1LBDEQxYMoen409kIqC2F1ctlNLqUefsGBhQp2S5JNzhy7yZlkC_3rjdxpazXMzI83vHkInRK4JAD8SlmAKWmYEDtoQmo6rWDGZ7toAhSmFWfs7QAdprQCIDVjYh_tcyJmooYJWj2vZXayxyEupXdfpQkeS99h67zBKcdR5zEaHCzO7wbrELPThbeul4PxGffy00TsPPYhDmXRBx2GkJ1f4ushGCXxOoZsxnSM9qzskznZ1iP0enf7Mn-oFk_3j_PrRaUpbXLFeMdronVxo8AYKlRXK94IbrluJJsRUzPdAdNlyBm3lDe6UQIKYrlSkh6h841uufsxmpTbwSVt-l56E8bUcioIEwT-BUlTA58SWsCLDahjSCka266jG2T8bAm0Pwm0N3e_CRT4bKs6qsF0f-j25fQbRMeCGQ</recordid><startdate>1982</startdate><enddate>1982</enddate><creator>Stockem, W</creator><creator>Hoffmann, H U</creator><creator>Gawlitta, W</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>1982</creationdate><title>Spatial organization and fine structure of the cortical filament layer in normal locomoting Amoeba proteus</title><author>Stockem, W ; Hoffmann, H U ; Gawlitta, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-67d741cc699b0ee39bd4b7597f7c5a681e46cd06cb75767f375c5b90759f7bba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>Amoeba - physiology</topic><topic>Amoeba - ultrastructure</topic><topic>Amoeba proteus</topic><topic>Animals</topic><topic>Cytoplasmic Streaming</topic><topic>Cytoskeleton - ultrastructure</topic><topic>Fixatives</topic><topic>Microscopy, Electron</topic><topic>Movement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stockem, W</creatorcontrib><creatorcontrib>Hoffmann, H U</creatorcontrib><creatorcontrib>Gawlitta, W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Cell and tissue research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stockem, W</au><au>Hoffmann, H U</au><au>Gawlitta, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial organization and fine structure of the cortical filament layer in normal locomoting Amoeba proteus</atitle><jtitle>Cell and tissue research</jtitle><addtitle>Cell Tissue Res</addtitle><date>1982</date><risdate>1982</risdate><volume>221</volume><issue>3</issue><spage>505</spage><epage>509</epage><pages>505-509</pages><issn>0302-766X</issn><eissn>1432-0878</eissn><abstract>The fine structural organization of a cortical filament layer in normal locomoting Amoeba proteus was demonstrated using improved fixation and embedding techniques. Best results were obtained after application of PIPES-buffered glutaraldehyde in connection with substances known to prevent the depolymerization of F-actin, followed by careful dehydration and freeze-substitution. The filament layer is continuous along the entire surface; it exhibits a varying thickness depending on the cell polarity, measuring several nm in advancing regions and 0.5-1 micron in retracting ones. Two different types of filaments are responsible for the construction of the layer: randomly distributed thin (actin) filaments forming an unordered meshwork beneath the plasma membrane, and thick (myosin) filaments mostly restricted to the uroid region in close association with F-actin. The cortical filament layer generates the motive force for amoeboid movement by contraction at posterior cell regions and induces a pressure flow that continues between the uroid with a high hydrostatic pressure and advancing pseudopodia with low one. The local destabilization of the cell surface as a precondition for the formation of pseudopodia is enabled by the detachment of the cortical filament layer from the plasma membrane. This results in morphological changes by the active separation of peripheral hyaloplasmic and central granuloplasmic regions.</abstract><cop>Germany</cop><pmid>7198940</pmid><doi>10.1007/bf00215699</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-766X
ispartof Cell and tissue research, 1982, Vol.221 (3), p.505-509
issn 0302-766X
1432-0878
language eng
recordid cdi_proquest_miscellaneous_73916910
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Amoeba - physiology
Amoeba - ultrastructure
Amoeba proteus
Animals
Cytoplasmic Streaming
Cytoskeleton - ultrastructure
Fixatives
Microscopy, Electron
Movement
title Spatial organization and fine structure of the cortical filament layer in normal locomoting Amoeba proteus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20organization%20and%20fine%20structure%20of%20the%20cortical%20filament%20layer%20in%20normal%20locomoting%20Amoeba%20proteus&rft.jtitle=Cell%20and%20tissue%20research&rft.au=Stockem,%20W&rft.date=1982&rft.volume=221&rft.issue=3&rft.spage=505&rft.epage=509&rft.pages=505-509&rft.issn=0302-766X&rft.eissn=1432-0878&rft_id=info:doi/10.1007/bf00215699&rft_dat=%3Cproquest_cross%3E15407213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15407213&rft_id=info:pmid/7198940&rfr_iscdi=true