Mechanisms of atrial fibrillation: mother rotors or multiple daughter wavelets, or both?

The mechanism of atrial fibrillation (AF) remains poorly understood. In this article, we present a new unifying hypothesis for the electrophysiologic basis of AF. We surmise that sustained AF depends on the uninterrupted periodic activity of discrete reentrant sites. The shorter reentrant circuits a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cardiovascular electrophysiology 1998-08, Vol.9 (8 Suppl), p.S2-12
Hauptverfasser: Jalife, J, Berenfeld, O, Skanes, A, Mandapati, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 8 Suppl
container_start_page S2
container_title Journal of cardiovascular electrophysiology
container_volume 9
creator Jalife, J
Berenfeld, O
Skanes, A
Mandapati, R
description The mechanism of atrial fibrillation (AF) remains poorly understood. In this article, we present a new unifying hypothesis for the electrophysiologic basis of AF. We surmise that sustained AF depends on the uninterrupted periodic activity of discrete reentrant sites. The shorter reentrant circuits act as dominant frequency sources that maintain the overall activity. The rapidly succeeding wavefronts emanating from these sources propagate through both atria and interact with anatomic and/or functional obstacles, leading to the phenomenon of "vortex shedding" and to wavelet formation. As suggested by recent numerical and experimental results from our laboratory, some of such wavelets may shrink and undergo decremental conduction, others may be annihilated by collision with another wavelet or a boundary, and still others may curl to create new vortices. The end result would be the fragmentation of the periodic wavefronts into multiple independent daughter wavelets, giving rise to new wavelets, and so on in the ceaseless, globally aperiodic motion that characterizes fibrillatory conduction.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_73910573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73910573</sourcerecordid><originalsourceid>FETCH-LOGICAL-p206t-8fed071bfed769cb0a6fe3d7eb0cad49c19e6e2f0be2d75b4707a60b7e0c7b473</originalsourceid><addsrcrecordid>eNotkEFLxDAUhHNQ1nX1Jwg5ebLw2mzztl5EFl2FFS8K3krSvtpIuqlJqvjvjdjTMMzHMMwRW-awLjOxQXHCTkP4AMiFhHLBFhUWKGW1ZG9P1PTqYMIQuOu4it4oyzujvbFWReMO13xwsSfPvYvOJ8rzYbLRjJZ4q6b3PqbsW32RpRiu_mKd-JszdtwpG-h81hV7vb972T5k--fd4_Z2n40FyJhtOmoBc50EZdVoULIj0SJpaFS7rpq8IklFB5qKFku9RkAlQSNBg8mJFbv87x29-5woxHowoaE0_kBuCjWKKocSRQIvZnDSA7X16M2g_E89XyF-AXk-W8M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73910573</pqid></control><display><type>article</type><title>Mechanisms of atrial fibrillation: mother rotors or multiple daughter wavelets, or both?</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jalife, J ; Berenfeld, O ; Skanes, A ; Mandapati, R</creator><creatorcontrib>Jalife, J ; Berenfeld, O ; Skanes, A ; Mandapati, R</creatorcontrib><description>The mechanism of atrial fibrillation (AF) remains poorly understood. In this article, we present a new unifying hypothesis for the electrophysiologic basis of AF. We surmise that sustained AF depends on the uninterrupted periodic activity of discrete reentrant sites. The shorter reentrant circuits act as dominant frequency sources that maintain the overall activity. The rapidly succeeding wavefronts emanating from these sources propagate through both atria and interact with anatomic and/or functional obstacles, leading to the phenomenon of "vortex shedding" and to wavelet formation. As suggested by recent numerical and experimental results from our laboratory, some of such wavelets may shrink and undergo decremental conduction, others may be annihilated by collision with another wavelet or a boundary, and still others may curl to create new vortices. The end result would be the fragmentation of the periodic wavefronts into multiple independent daughter wavelets, giving rise to new wavelets, and so on in the ceaseless, globally aperiodic motion that characterizes fibrillatory conduction.</description><identifier>ISSN: 1045-3873</identifier><identifier>PMID: 9727669</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Atrial Fibrillation - physiopathology ; Electrophysiology ; Humans</subject><ispartof>Journal of cardiovascular electrophysiology, 1998-08, Vol.9 (8 Suppl), p.S2-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9727669$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jalife, J</creatorcontrib><creatorcontrib>Berenfeld, O</creatorcontrib><creatorcontrib>Skanes, A</creatorcontrib><creatorcontrib>Mandapati, R</creatorcontrib><title>Mechanisms of atrial fibrillation: mother rotors or multiple daughter wavelets, or both?</title><title>Journal of cardiovascular electrophysiology</title><addtitle>J Cardiovasc Electrophysiol</addtitle><description>The mechanism of atrial fibrillation (AF) remains poorly understood. In this article, we present a new unifying hypothesis for the electrophysiologic basis of AF. We surmise that sustained AF depends on the uninterrupted periodic activity of discrete reentrant sites. The shorter reentrant circuits act as dominant frequency sources that maintain the overall activity. The rapidly succeeding wavefronts emanating from these sources propagate through both atria and interact with anatomic and/or functional obstacles, leading to the phenomenon of "vortex shedding" and to wavelet formation. As suggested by recent numerical and experimental results from our laboratory, some of such wavelets may shrink and undergo decremental conduction, others may be annihilated by collision with another wavelet or a boundary, and still others may curl to create new vortices. The end result would be the fragmentation of the periodic wavefronts into multiple independent daughter wavelets, giving rise to new wavelets, and so on in the ceaseless, globally aperiodic motion that characterizes fibrillatory conduction.</description><subject>Animals</subject><subject>Atrial Fibrillation - physiopathology</subject><subject>Electrophysiology</subject><subject>Humans</subject><issn>1045-3873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNotkEFLxDAUhHNQ1nX1Jwg5ebLw2mzztl5EFl2FFS8K3krSvtpIuqlJqvjvjdjTMMzHMMwRW-awLjOxQXHCTkP4AMiFhHLBFhUWKGW1ZG9P1PTqYMIQuOu4it4oyzujvbFWReMO13xwsSfPvYvOJ8rzYbLRjJZ4q6b3PqbsW32RpRiu_mKd-JszdtwpG-h81hV7vb972T5k--fd4_Z2n40FyJhtOmoBc50EZdVoULIj0SJpaFS7rpq8IklFB5qKFku9RkAlQSNBg8mJFbv87x29-5woxHowoaE0_kBuCjWKKocSRQIvZnDSA7X16M2g_E89XyF-AXk-W8M</recordid><startdate>19980801</startdate><enddate>19980801</enddate><creator>Jalife, J</creator><creator>Berenfeld, O</creator><creator>Skanes, A</creator><creator>Mandapati, R</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>19980801</creationdate><title>Mechanisms of atrial fibrillation: mother rotors or multiple daughter wavelets, or both?</title><author>Jalife, J ; Berenfeld, O ; Skanes, A ; Mandapati, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p206t-8fed071bfed769cb0a6fe3d7eb0cad49c19e6e2f0be2d75b4707a60b7e0c7b473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>Atrial Fibrillation - physiopathology</topic><topic>Electrophysiology</topic><topic>Humans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jalife, J</creatorcontrib><creatorcontrib>Berenfeld, O</creatorcontrib><creatorcontrib>Skanes, A</creatorcontrib><creatorcontrib>Mandapati, R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cardiovascular electrophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jalife, J</au><au>Berenfeld, O</au><au>Skanes, A</au><au>Mandapati, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of atrial fibrillation: mother rotors or multiple daughter wavelets, or both?</atitle><jtitle>Journal of cardiovascular electrophysiology</jtitle><addtitle>J Cardiovasc Electrophysiol</addtitle><date>1998-08-01</date><risdate>1998</risdate><volume>9</volume><issue>8 Suppl</issue><spage>S2</spage><epage>12</epage><pages>S2-12</pages><issn>1045-3873</issn><abstract>The mechanism of atrial fibrillation (AF) remains poorly understood. In this article, we present a new unifying hypothesis for the electrophysiologic basis of AF. We surmise that sustained AF depends on the uninterrupted periodic activity of discrete reentrant sites. The shorter reentrant circuits act as dominant frequency sources that maintain the overall activity. The rapidly succeeding wavefronts emanating from these sources propagate through both atria and interact with anatomic and/or functional obstacles, leading to the phenomenon of "vortex shedding" and to wavelet formation. As suggested by recent numerical and experimental results from our laboratory, some of such wavelets may shrink and undergo decremental conduction, others may be annihilated by collision with another wavelet or a boundary, and still others may curl to create new vortices. The end result would be the fragmentation of the periodic wavefronts into multiple independent daughter wavelets, giving rise to new wavelets, and so on in the ceaseless, globally aperiodic motion that characterizes fibrillatory conduction.</abstract><cop>United States</cop><pmid>9727669</pmid></addata></record>
fulltext fulltext
identifier ISSN: 1045-3873
ispartof Journal of cardiovascular electrophysiology, 1998-08, Vol.9 (8 Suppl), p.S2-12
issn 1045-3873
language eng
recordid cdi_proquest_miscellaneous_73910573
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Atrial Fibrillation - physiopathology
Electrophysiology
Humans
title Mechanisms of atrial fibrillation: mother rotors or multiple daughter wavelets, or both?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20atrial%20fibrillation:%20mother%20rotors%20or%20multiple%20daughter%20wavelets,%20or%20both?&rft.jtitle=Journal%20of%20cardiovascular%20electrophysiology&rft.au=Jalife,%20J&rft.date=1998-08-01&rft.volume=9&rft.issue=8%20Suppl&rft.spage=S2&rft.epage=12&rft.pages=S2-12&rft.issn=1045-3873&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E73910573%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73910573&rft_id=info:pmid/9727669&rfr_iscdi=true