Angiogenic growth factor mRNA responses to passive and contraction-induced hyperperfusion in skeletal muscle
Department of Medicine, University of California, San Diego, La Jolla, California 92093-0623 It has been proposed that, in skeletal muscle, the angiogenic response to exercise may be signaled by the increase in muscle blood flow, via biomechanical changes in the microcirculation (increased shear str...
Gespeichert in:
Veröffentlicht in: | Journal of applied physiology (1985) 1998-09, Vol.85 (3), p.1142-1149 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1149 |
---|---|
container_issue | 3 |
container_start_page | 1142 |
container_title | Journal of applied physiology (1985) |
container_volume | 85 |
creator | Roca, Josep Gavin, Timothy P Jordan, Maria Siafakas, Nikos Wagner, Harrieth Benoit, Henri Breen, Ellen Wagner, Peter D |
description | Department of Medicine, University of California, San Diego, La
Jolla, California 92093-0623
It has been proposed that, in skeletal muscle,
the angiogenic response to exercise may be signaled by the increase in
muscle blood flow, via biomechanical changes in the microcirculation (increased shear stress and/or wall tension). To
examine this hypothesis, we compared the change in abundance of
vascular endothelial growth factor (VEGF), basic fibroblast growth
factor (bFGF), and transforming growth
factor- 1
(TGF- 1 ) mRNA in skeletal
muscles of the canine leg after 1 h of pump-controlled high blood flow alone (passive hyperperfusion; protocol
A ) and electrical stimulation of the femoral and
sciatic nerves producing muscle contraction ( protocol
B ). The increase in leg blood flow (5.4- and 5.9-fold change from resting values, respectively) was similar in both groups.
Passive hyperperfusion alone did not increase message abundance for
VEGF (ratio of mRNA to 18S signals after vs. before hyperperfusion,
0.94 ± 0.08) or bFGF (1.08 ± 0.05) but slightly increased that
of TGF- 1 (1.14 ± 0.07;
P |
doi_str_mv | 10.1152/jappl.1998.85.3.1142 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_73898448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34767086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-6fb44d709897cae2601fe7c3b314651dca3564953ff8c89063e068ab4e5f23533</originalsourceid><addsrcrecordid>eNp1kWGL1DAQhoso597pP1AIIuKXrk2TtMnH5fBO4VCQ83PIppM2azapSXvn_ntTd1lQMAQCM887M5m3KF7hao0xqz_s1Di6NRaCrzlbkxyk9ZNilVN1iZsKPy1WvGVV2TLePi8uU9pVFaaU4YviQrS1YIKsCrfxvQ09eKtRH8PjNCCj9BQi2n_7skER0hh8goSmgEaVkn0ApHyHdPBTzKANvrS-mzV0aDiMEPM1c8phZD1KP8DBpBzaz0k7eFE8M8oleHl6r4rvNx_vrz-Vd19vP19v7kpNSTOVjdlS2rWV4KLVCur8FwOtJluCacNwpxVhDRWMGMM1F1VDoGq42lJgpiaMkKvi3bHuGMPPGdIk9zZpcE55CHOSLeGCU8oz-OYfcBfm6PNsss6nIk29VKNHSMeQUgQjx2j3Kh4kruTihPzjhFyckJxJIhcnsuz1qfa83UN3Fp1Wn_NvT3mVtHImKq9tOmM1JazmbcbeH7HB9sOjjSDH4ZD360J_WBr_1ZH-H72ZnbuHX9OiOUvk2BnyGx8ytK0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222203623</pqid></control><display><type>article</type><title>Angiogenic growth factor mRNA responses to passive and contraction-induced hyperperfusion in skeletal muscle</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Roca, Josep ; Gavin, Timothy P ; Jordan, Maria ; Siafakas, Nikos ; Wagner, Harrieth ; Benoit, Henri ; Breen, Ellen ; Wagner, Peter D</creator><creatorcontrib>Roca, Josep ; Gavin, Timothy P ; Jordan, Maria ; Siafakas, Nikos ; Wagner, Harrieth ; Benoit, Henri ; Breen, Ellen ; Wagner, Peter D</creatorcontrib><description>Department of Medicine, University of California, San Diego, La
Jolla, California 92093-0623
It has been proposed that, in skeletal muscle,
the angiogenic response to exercise may be signaled by the increase in
muscle blood flow, via biomechanical changes in the microcirculation (increased shear stress and/or wall tension). To
examine this hypothesis, we compared the change in abundance of
vascular endothelial growth factor (VEGF), basic fibroblast growth
factor (bFGF), and transforming growth
factor- 1
(TGF- 1 ) mRNA in skeletal
muscles of the canine leg after 1 h of pump-controlled high blood flow alone (passive hyperperfusion; protocol
A ) and electrical stimulation of the femoral and
sciatic nerves producing muscle contraction ( protocol
B ). The increase in leg blood flow (5.4- and 5.9-fold change from resting values, respectively) was similar in both groups.
Passive hyperperfusion alone did not increase message abundance for
VEGF (ratio of mRNA to 18S signals after vs. before hyperperfusion,
0.94 ± 0.08) or bFGF (1.08 ± 0.05) but slightly increased that
of TGF- 1 (1.14 ± 0.07;
P < 0.03). In contrast, as
previously found in the rat, electrical stimulation provoked more than
a threefold increase in VEGF mRNA abundance (3.40 ± 1.45;
P < 0.02). However, electrical
stimulation produced no significant changes in either bFGF (1.16 ± 0.13) or TGF- 1 (1.31 ± 0.27). These results suggest that the increased muscle blood flow of exercise does not account for the increased abundance of these angiogenic growth factor mRNA levels in response to acute
exercise. We speculate that other factors, such as local
hypoxia, metabolite concentration changes, or mechanical effects of
contraction per se, may be responsible for the effects of exercise.
vascular endothelial growth factor; basic fibroblast growth factor; transforming growth factor; Northern analysis</description><identifier>ISSN: 8750-7587</identifier><identifier>EISSN: 1522-1601</identifier><identifier>DOI: 10.1152/jappl.1998.85.3.1142</identifier><identifier>PMID: 9729593</identifier><identifier>CODEN: JAPHEV</identifier><language>eng</language><publisher>Bethesda, MD: Am Physiological Soc</publisher><subject>Anatomy & physiology ; Animals ; Biological and medical sciences ; Blood Pressure - physiology ; Blotting, Northern ; Dogs ; Endothelial Growth Factors - biosynthesis ; Exercise ; Female ; Fibroblast Growth Factor 2 - biosynthesis ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation - physiology ; Lymphokines - biosynthesis ; Male ; Muscle Contraction - physiology ; Muscle, Skeletal - blood supply ; Muscle, Skeletal - metabolism ; Muscular system ; Perfusion ; Proteins ; Regional Blood Flow - physiology ; Ribonucleic acid ; RNA ; RNA, Messenger - biosynthesis ; Striated muscle. Tendons ; Transforming Growth Factor beta - biosynthesis ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors ; Vertebrates: osteoarticular system, musculoskeletal system</subject><ispartof>Journal of applied physiology (1985), 1998-09, Vol.85 (3), p.1142-1149</ispartof><rights>1998 INIST-CNRS</rights><rights>Copyright American Physiological Society Sep 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-6fb44d709897cae2601fe7c3b314651dca3564953ff8c89063e068ab4e5f23533</citedby><cites>FETCH-LOGICAL-c436t-6fb44d709897cae2601fe7c3b314651dca3564953ff8c89063e068ab4e5f23533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3039,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2435287$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9729593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roca, Josep</creatorcontrib><creatorcontrib>Gavin, Timothy P</creatorcontrib><creatorcontrib>Jordan, Maria</creatorcontrib><creatorcontrib>Siafakas, Nikos</creatorcontrib><creatorcontrib>Wagner, Harrieth</creatorcontrib><creatorcontrib>Benoit, Henri</creatorcontrib><creatorcontrib>Breen, Ellen</creatorcontrib><creatorcontrib>Wagner, Peter D</creatorcontrib><title>Angiogenic growth factor mRNA responses to passive and contraction-induced hyperperfusion in skeletal muscle</title><title>Journal of applied physiology (1985)</title><addtitle>J Appl Physiol (1985)</addtitle><description>Department of Medicine, University of California, San Diego, La
Jolla, California 92093-0623
It has been proposed that, in skeletal muscle,
the angiogenic response to exercise may be signaled by the increase in
muscle blood flow, via biomechanical changes in the microcirculation (increased shear stress and/or wall tension). To
examine this hypothesis, we compared the change in abundance of
vascular endothelial growth factor (VEGF), basic fibroblast growth
factor (bFGF), and transforming growth
factor- 1
(TGF- 1 ) mRNA in skeletal
muscles of the canine leg after 1 h of pump-controlled high blood flow alone (passive hyperperfusion; protocol
A ) and electrical stimulation of the femoral and
sciatic nerves producing muscle contraction ( protocol
B ). The increase in leg blood flow (5.4- and 5.9-fold change from resting values, respectively) was similar in both groups.
Passive hyperperfusion alone did not increase message abundance for
VEGF (ratio of mRNA to 18S signals after vs. before hyperperfusion,
0.94 ± 0.08) or bFGF (1.08 ± 0.05) but slightly increased that
of TGF- 1 (1.14 ± 0.07;
P < 0.03). In contrast, as
previously found in the rat, electrical stimulation provoked more than
a threefold increase in VEGF mRNA abundance (3.40 ± 1.45;
P < 0.02). However, electrical
stimulation produced no significant changes in either bFGF (1.16 ± 0.13) or TGF- 1 (1.31 ± 0.27). These results suggest that the increased muscle blood flow of exercise does not account for the increased abundance of these angiogenic growth factor mRNA levels in response to acute
exercise. We speculate that other factors, such as local
hypoxia, metabolite concentration changes, or mechanical effects of
contraction per se, may be responsible for the effects of exercise.
vascular endothelial growth factor; basic fibroblast growth factor; transforming growth factor; Northern analysis</description><subject>Anatomy & physiology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Blood Pressure - physiology</subject><subject>Blotting, Northern</subject><subject>Dogs</subject><subject>Endothelial Growth Factors - biosynthesis</subject><subject>Exercise</subject><subject>Female</subject><subject>Fibroblast Growth Factor 2 - biosynthesis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation - physiology</subject><subject>Lymphokines - biosynthesis</subject><subject>Male</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle, Skeletal - blood supply</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscular system</subject><subject>Perfusion</subject><subject>Proteins</subject><subject>Regional Blood Flow - physiology</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Messenger - biosynthesis</subject><subject>Striated muscle. Tendons</subject><subject>Transforming Growth Factor beta - biosynthesis</subject><subject>Vascular Endothelial Growth Factor A</subject><subject>Vascular Endothelial Growth Factors</subject><subject>Vertebrates: osteoarticular system, musculoskeletal system</subject><issn>8750-7587</issn><issn>1522-1601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kWGL1DAQhoso597pP1AIIuKXrk2TtMnH5fBO4VCQ83PIppM2azapSXvn_ntTd1lQMAQCM887M5m3KF7hao0xqz_s1Di6NRaCrzlbkxyk9ZNilVN1iZsKPy1WvGVV2TLePi8uU9pVFaaU4YviQrS1YIKsCrfxvQ09eKtRH8PjNCCj9BQi2n_7skER0hh8goSmgEaVkn0ApHyHdPBTzKANvrS-mzV0aDiMEPM1c8phZD1KP8DBpBzaz0k7eFE8M8oleHl6r4rvNx_vrz-Vd19vP19v7kpNSTOVjdlS2rWV4KLVCur8FwOtJluCacNwpxVhDRWMGMM1F1VDoGq42lJgpiaMkKvi3bHuGMPPGdIk9zZpcE55CHOSLeGCU8oz-OYfcBfm6PNsss6nIk29VKNHSMeQUgQjx2j3Kh4kruTihPzjhFyckJxJIhcnsuz1qfa83UN3Fp1Wn_NvT3mVtHImKq9tOmM1JazmbcbeH7HB9sOjjSDH4ZD360J_WBr_1ZH-H72ZnbuHX9OiOUvk2BnyGx8ytK0</recordid><startdate>19980901</startdate><enddate>19980901</enddate><creator>Roca, Josep</creator><creator>Gavin, Timothy P</creator><creator>Jordan, Maria</creator><creator>Siafakas, Nikos</creator><creator>Wagner, Harrieth</creator><creator>Benoit, Henri</creator><creator>Breen, Ellen</creator><creator>Wagner, Peter D</creator><general>Am Physiological Soc</general><general>American Physiological Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19980901</creationdate><title>Angiogenic growth factor mRNA responses to passive and contraction-induced hyperperfusion in skeletal muscle</title><author>Roca, Josep ; Gavin, Timothy P ; Jordan, Maria ; Siafakas, Nikos ; Wagner, Harrieth ; Benoit, Henri ; Breen, Ellen ; Wagner, Peter D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-6fb44d709897cae2601fe7c3b314651dca3564953ff8c89063e068ab4e5f23533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Anatomy & physiology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Blood Pressure - physiology</topic><topic>Blotting, Northern</topic><topic>Dogs</topic><topic>Endothelial Growth Factors - biosynthesis</topic><topic>Exercise</topic><topic>Female</topic><topic>Fibroblast Growth Factor 2 - biosynthesis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation - physiology</topic><topic>Lymphokines - biosynthesis</topic><topic>Male</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle, Skeletal - blood supply</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscular system</topic><topic>Perfusion</topic><topic>Proteins</topic><topic>Regional Blood Flow - physiology</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Messenger - biosynthesis</topic><topic>Striated muscle. Tendons</topic><topic>Transforming Growth Factor beta - biosynthesis</topic><topic>Vascular Endothelial Growth Factor A</topic><topic>Vascular Endothelial Growth Factors</topic><topic>Vertebrates: osteoarticular system, musculoskeletal system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roca, Josep</creatorcontrib><creatorcontrib>Gavin, Timothy P</creatorcontrib><creatorcontrib>Jordan, Maria</creatorcontrib><creatorcontrib>Siafakas, Nikos</creatorcontrib><creatorcontrib>Wagner, Harrieth</creatorcontrib><creatorcontrib>Benoit, Henri</creatorcontrib><creatorcontrib>Breen, Ellen</creatorcontrib><creatorcontrib>Wagner, Peter D</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied physiology (1985)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roca, Josep</au><au>Gavin, Timothy P</au><au>Jordan, Maria</au><au>Siafakas, Nikos</au><au>Wagner, Harrieth</au><au>Benoit, Henri</au><au>Breen, Ellen</au><au>Wagner, Peter D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angiogenic growth factor mRNA responses to passive and contraction-induced hyperperfusion in skeletal muscle</atitle><jtitle>Journal of applied physiology (1985)</jtitle><addtitle>J Appl Physiol (1985)</addtitle><date>1998-09-01</date><risdate>1998</risdate><volume>85</volume><issue>3</issue><spage>1142</spage><epage>1149</epage><pages>1142-1149</pages><issn>8750-7587</issn><eissn>1522-1601</eissn><coden>JAPHEV</coden><abstract>Department of Medicine, University of California, San Diego, La
Jolla, California 92093-0623
It has been proposed that, in skeletal muscle,
the angiogenic response to exercise may be signaled by the increase in
muscle blood flow, via biomechanical changes in the microcirculation (increased shear stress and/or wall tension). To
examine this hypothesis, we compared the change in abundance of
vascular endothelial growth factor (VEGF), basic fibroblast growth
factor (bFGF), and transforming growth
factor- 1
(TGF- 1 ) mRNA in skeletal
muscles of the canine leg after 1 h of pump-controlled high blood flow alone (passive hyperperfusion; protocol
A ) and electrical stimulation of the femoral and
sciatic nerves producing muscle contraction ( protocol
B ). The increase in leg blood flow (5.4- and 5.9-fold change from resting values, respectively) was similar in both groups.
Passive hyperperfusion alone did not increase message abundance for
VEGF (ratio of mRNA to 18S signals after vs. before hyperperfusion,
0.94 ± 0.08) or bFGF (1.08 ± 0.05) but slightly increased that
of TGF- 1 (1.14 ± 0.07;
P < 0.03). In contrast, as
previously found in the rat, electrical stimulation provoked more than
a threefold increase in VEGF mRNA abundance (3.40 ± 1.45;
P < 0.02). However, electrical
stimulation produced no significant changes in either bFGF (1.16 ± 0.13) or TGF- 1 (1.31 ± 0.27). These results suggest that the increased muscle blood flow of exercise does not account for the increased abundance of these angiogenic growth factor mRNA levels in response to acute
exercise. We speculate that other factors, such as local
hypoxia, metabolite concentration changes, or mechanical effects of
contraction per se, may be responsible for the effects of exercise.
vascular endothelial growth factor; basic fibroblast growth factor; transforming growth factor; Northern analysis</abstract><cop>Bethesda, MD</cop><pub>Am Physiological Soc</pub><pmid>9729593</pmid><doi>10.1152/jappl.1998.85.3.1142</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8750-7587 |
ispartof | Journal of applied physiology (1985), 1998-09, Vol.85 (3), p.1142-1149 |
issn | 8750-7587 1522-1601 |
language | eng |
recordid | cdi_proquest_miscellaneous_73898448 |
source | MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Anatomy & physiology Animals Biological and medical sciences Blood Pressure - physiology Blotting, Northern Dogs Endothelial Growth Factors - biosynthesis Exercise Female Fibroblast Growth Factor 2 - biosynthesis Fundamental and applied biological sciences. Psychology Gene Expression Regulation - physiology Lymphokines - biosynthesis Male Muscle Contraction - physiology Muscle, Skeletal - blood supply Muscle, Skeletal - metabolism Muscular system Perfusion Proteins Regional Blood Flow - physiology Ribonucleic acid RNA RNA, Messenger - biosynthesis Striated muscle. Tendons Transforming Growth Factor beta - biosynthesis Vascular Endothelial Growth Factor A Vascular Endothelial Growth Factors Vertebrates: osteoarticular system, musculoskeletal system |
title | Angiogenic growth factor mRNA responses to passive and contraction-induced hyperperfusion in skeletal muscle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angiogenic%20growth%20factor%20mRNA%20responses%20to%20passive%20and%20contraction-induced%20hyperperfusion%20in%20skeletal%20muscle&rft.jtitle=Journal%20of%20applied%20physiology%20(1985)&rft.au=Roca,%20Josep&rft.date=1998-09-01&rft.volume=85&rft.issue=3&rft.spage=1142&rft.epage=1149&rft.pages=1142-1149&rft.issn=8750-7587&rft.eissn=1522-1601&rft.coden=JAPHEV&rft_id=info:doi/10.1152/jappl.1998.85.3.1142&rft_dat=%3Cproquest_pasca%3E34767086%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222203623&rft_id=info:pmid/9729593&rfr_iscdi=true |