Angiogenic growth factor mRNA responses to passive and contraction-induced hyperperfusion in skeletal muscle

Department of Medicine, University of California, San Diego, La Jolla, California 92093-0623 It has been proposed that, in skeletal muscle, the angiogenic response to exercise may be signaled by the increase in muscle blood flow, via biomechanical changes in the microcirculation (increased shear str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physiology (1985) 1998-09, Vol.85 (3), p.1142-1149
Hauptverfasser: Roca, Josep, Gavin, Timothy P, Jordan, Maria, Siafakas, Nikos, Wagner, Harrieth, Benoit, Henri, Breen, Ellen, Wagner, Peter D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1149
container_issue 3
container_start_page 1142
container_title Journal of applied physiology (1985)
container_volume 85
creator Roca, Josep
Gavin, Timothy P
Jordan, Maria
Siafakas, Nikos
Wagner, Harrieth
Benoit, Henri
Breen, Ellen
Wagner, Peter D
description Department of Medicine, University of California, San Diego, La Jolla, California 92093-0623 It has been proposed that, in skeletal muscle, the angiogenic response to exercise may be signaled by the increase in muscle blood flow, via biomechanical changes in the microcirculation (increased shear stress and/or wall tension). To examine this hypothesis, we compared the change in abundance of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and transforming growth factor- 1 (TGF- 1 ) mRNA in skeletal muscles of the canine leg after 1 h of pump-controlled high blood flow alone (passive hyperperfusion; protocol A ) and electrical stimulation of the femoral and sciatic nerves producing muscle contraction ( protocol B ). The increase in leg blood flow (5.4- and 5.9-fold change from resting values, respectively) was similar in both groups. Passive hyperperfusion alone did not increase message abundance for VEGF (ratio of mRNA to 18S signals after vs. before hyperperfusion, 0.94 ± 0.08) or bFGF (1.08 ± 0.05) but slightly increased that of TGF- 1 (1.14 ± 0.07; P  
doi_str_mv 10.1152/jappl.1998.85.3.1142
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_73898448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34767086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-6fb44d709897cae2601fe7c3b314651dca3564953ff8c89063e068ab4e5f23533</originalsourceid><addsrcrecordid>eNp1kWGL1DAQhoso597pP1AIIuKXrk2TtMnH5fBO4VCQ83PIppM2azapSXvn_ntTd1lQMAQCM887M5m3KF7hao0xqz_s1Di6NRaCrzlbkxyk9ZNilVN1iZsKPy1WvGVV2TLePi8uU9pVFaaU4YviQrS1YIKsCrfxvQ09eKtRH8PjNCCj9BQi2n_7skER0hh8goSmgEaVkn0ApHyHdPBTzKANvrS-mzV0aDiMEPM1c8phZD1KP8DBpBzaz0k7eFE8M8oleHl6r4rvNx_vrz-Vd19vP19v7kpNSTOVjdlS2rWV4KLVCur8FwOtJluCacNwpxVhDRWMGMM1F1VDoGq42lJgpiaMkKvi3bHuGMPPGdIk9zZpcE55CHOSLeGCU8oz-OYfcBfm6PNsss6nIk29VKNHSMeQUgQjx2j3Kh4kruTihPzjhFyckJxJIhcnsuz1qfa83UN3Fp1Wn_NvT3mVtHImKq9tOmM1JazmbcbeH7HB9sOjjSDH4ZD360J_WBr_1ZH-H72ZnbuHX9OiOUvk2BnyGx8ytK0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222203623</pqid></control><display><type>article</type><title>Angiogenic growth factor mRNA responses to passive and contraction-induced hyperperfusion in skeletal muscle</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Roca, Josep ; Gavin, Timothy P ; Jordan, Maria ; Siafakas, Nikos ; Wagner, Harrieth ; Benoit, Henri ; Breen, Ellen ; Wagner, Peter D</creator><creatorcontrib>Roca, Josep ; Gavin, Timothy P ; Jordan, Maria ; Siafakas, Nikos ; Wagner, Harrieth ; Benoit, Henri ; Breen, Ellen ; Wagner, Peter D</creatorcontrib><description>Department of Medicine, University of California, San Diego, La Jolla, California 92093-0623 It has been proposed that, in skeletal muscle, the angiogenic response to exercise may be signaled by the increase in muscle blood flow, via biomechanical changes in the microcirculation (increased shear stress and/or wall tension). To examine this hypothesis, we compared the change in abundance of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and transforming growth factor- 1 (TGF- 1 ) mRNA in skeletal muscles of the canine leg after 1 h of pump-controlled high blood flow alone (passive hyperperfusion; protocol A ) and electrical stimulation of the femoral and sciatic nerves producing muscle contraction ( protocol B ). The increase in leg blood flow (5.4- and 5.9-fold change from resting values, respectively) was similar in both groups. Passive hyperperfusion alone did not increase message abundance for VEGF (ratio of mRNA to 18S signals after vs. before hyperperfusion, 0.94 ± 0.08) or bFGF (1.08 ± 0.05) but slightly increased that of TGF- 1 (1.14 ± 0.07; P  &lt; 0.03). In contrast, as previously found in the rat, electrical stimulation provoked more than a threefold increase in VEGF mRNA abundance (3.40 ± 1.45; P  &lt; 0.02). However, electrical stimulation produced no significant changes in either bFGF (1.16 ± 0.13) or TGF- 1 (1.31 ± 0.27). These results suggest that the increased muscle blood flow of exercise does not account for the increased abundance of these angiogenic growth factor mRNA levels in response to acute exercise. We speculate that other factors, such as local hypoxia, metabolite concentration changes, or mechanical effects of contraction per se, may be responsible for the effects of exercise. vascular endothelial growth factor; basic fibroblast growth factor; transforming growth factor; Northern analysis</description><identifier>ISSN: 8750-7587</identifier><identifier>EISSN: 1522-1601</identifier><identifier>DOI: 10.1152/jappl.1998.85.3.1142</identifier><identifier>PMID: 9729593</identifier><identifier>CODEN: JAPHEV</identifier><language>eng</language><publisher>Bethesda, MD: Am Physiological Soc</publisher><subject>Anatomy &amp; physiology ; Animals ; Biological and medical sciences ; Blood Pressure - physiology ; Blotting, Northern ; Dogs ; Endothelial Growth Factors - biosynthesis ; Exercise ; Female ; Fibroblast Growth Factor 2 - biosynthesis ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation - physiology ; Lymphokines - biosynthesis ; Male ; Muscle Contraction - physiology ; Muscle, Skeletal - blood supply ; Muscle, Skeletal - metabolism ; Muscular system ; Perfusion ; Proteins ; Regional Blood Flow - physiology ; Ribonucleic acid ; RNA ; RNA, Messenger - biosynthesis ; Striated muscle. Tendons ; Transforming Growth Factor beta - biosynthesis ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors ; Vertebrates: osteoarticular system, musculoskeletal system</subject><ispartof>Journal of applied physiology (1985), 1998-09, Vol.85 (3), p.1142-1149</ispartof><rights>1998 INIST-CNRS</rights><rights>Copyright American Physiological Society Sep 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-6fb44d709897cae2601fe7c3b314651dca3564953ff8c89063e068ab4e5f23533</citedby><cites>FETCH-LOGICAL-c436t-6fb44d709897cae2601fe7c3b314651dca3564953ff8c89063e068ab4e5f23533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3039,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2435287$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9729593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roca, Josep</creatorcontrib><creatorcontrib>Gavin, Timothy P</creatorcontrib><creatorcontrib>Jordan, Maria</creatorcontrib><creatorcontrib>Siafakas, Nikos</creatorcontrib><creatorcontrib>Wagner, Harrieth</creatorcontrib><creatorcontrib>Benoit, Henri</creatorcontrib><creatorcontrib>Breen, Ellen</creatorcontrib><creatorcontrib>Wagner, Peter D</creatorcontrib><title>Angiogenic growth factor mRNA responses to passive and contraction-induced hyperperfusion in skeletal muscle</title><title>Journal of applied physiology (1985)</title><addtitle>J Appl Physiol (1985)</addtitle><description>Department of Medicine, University of California, San Diego, La Jolla, California 92093-0623 It has been proposed that, in skeletal muscle, the angiogenic response to exercise may be signaled by the increase in muscle blood flow, via biomechanical changes in the microcirculation (increased shear stress and/or wall tension). To examine this hypothesis, we compared the change in abundance of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and transforming growth factor- 1 (TGF- 1 ) mRNA in skeletal muscles of the canine leg after 1 h of pump-controlled high blood flow alone (passive hyperperfusion; protocol A ) and electrical stimulation of the femoral and sciatic nerves producing muscle contraction ( protocol B ). The increase in leg blood flow (5.4- and 5.9-fold change from resting values, respectively) was similar in both groups. Passive hyperperfusion alone did not increase message abundance for VEGF (ratio of mRNA to 18S signals after vs. before hyperperfusion, 0.94 ± 0.08) or bFGF (1.08 ± 0.05) but slightly increased that of TGF- 1 (1.14 ± 0.07; P  &lt; 0.03). In contrast, as previously found in the rat, electrical stimulation provoked more than a threefold increase in VEGF mRNA abundance (3.40 ± 1.45; P  &lt; 0.02). However, electrical stimulation produced no significant changes in either bFGF (1.16 ± 0.13) or TGF- 1 (1.31 ± 0.27). These results suggest that the increased muscle blood flow of exercise does not account for the increased abundance of these angiogenic growth factor mRNA levels in response to acute exercise. We speculate that other factors, such as local hypoxia, metabolite concentration changes, or mechanical effects of contraction per se, may be responsible for the effects of exercise. vascular endothelial growth factor; basic fibroblast growth factor; transforming growth factor; Northern analysis</description><subject>Anatomy &amp; physiology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Blood Pressure - physiology</subject><subject>Blotting, Northern</subject><subject>Dogs</subject><subject>Endothelial Growth Factors - biosynthesis</subject><subject>Exercise</subject><subject>Female</subject><subject>Fibroblast Growth Factor 2 - biosynthesis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation - physiology</subject><subject>Lymphokines - biosynthesis</subject><subject>Male</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle, Skeletal - blood supply</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscular system</subject><subject>Perfusion</subject><subject>Proteins</subject><subject>Regional Blood Flow - physiology</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Messenger - biosynthesis</subject><subject>Striated muscle. Tendons</subject><subject>Transforming Growth Factor beta - biosynthesis</subject><subject>Vascular Endothelial Growth Factor A</subject><subject>Vascular Endothelial Growth Factors</subject><subject>Vertebrates: osteoarticular system, musculoskeletal system</subject><issn>8750-7587</issn><issn>1522-1601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kWGL1DAQhoso597pP1AIIuKXrk2TtMnH5fBO4VCQ83PIppM2azapSXvn_ntTd1lQMAQCM887M5m3KF7hao0xqz_s1Di6NRaCrzlbkxyk9ZNilVN1iZsKPy1WvGVV2TLePi8uU9pVFaaU4YviQrS1YIKsCrfxvQ09eKtRH8PjNCCj9BQi2n_7skER0hh8goSmgEaVkn0ApHyHdPBTzKANvrS-mzV0aDiMEPM1c8phZD1KP8DBpBzaz0k7eFE8M8oleHl6r4rvNx_vrz-Vd19vP19v7kpNSTOVjdlS2rWV4KLVCur8FwOtJluCacNwpxVhDRWMGMM1F1VDoGq42lJgpiaMkKvi3bHuGMPPGdIk9zZpcE55CHOSLeGCU8oz-OYfcBfm6PNsss6nIk29VKNHSMeQUgQjx2j3Kh4kruTihPzjhFyckJxJIhcnsuz1qfa83UN3Fp1Wn_NvT3mVtHImKq9tOmM1JazmbcbeH7HB9sOjjSDH4ZD360J_WBr_1ZH-H72ZnbuHX9OiOUvk2BnyGx8ytK0</recordid><startdate>19980901</startdate><enddate>19980901</enddate><creator>Roca, Josep</creator><creator>Gavin, Timothy P</creator><creator>Jordan, Maria</creator><creator>Siafakas, Nikos</creator><creator>Wagner, Harrieth</creator><creator>Benoit, Henri</creator><creator>Breen, Ellen</creator><creator>Wagner, Peter D</creator><general>Am Physiological Soc</general><general>American Physiological Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19980901</creationdate><title>Angiogenic growth factor mRNA responses to passive and contraction-induced hyperperfusion in skeletal muscle</title><author>Roca, Josep ; Gavin, Timothy P ; Jordan, Maria ; Siafakas, Nikos ; Wagner, Harrieth ; Benoit, Henri ; Breen, Ellen ; Wagner, Peter D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-6fb44d709897cae2601fe7c3b314651dca3564953ff8c89063e068ab4e5f23533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Anatomy &amp; physiology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Blood Pressure - physiology</topic><topic>Blotting, Northern</topic><topic>Dogs</topic><topic>Endothelial Growth Factors - biosynthesis</topic><topic>Exercise</topic><topic>Female</topic><topic>Fibroblast Growth Factor 2 - biosynthesis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation - physiology</topic><topic>Lymphokines - biosynthesis</topic><topic>Male</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle, Skeletal - blood supply</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscular system</topic><topic>Perfusion</topic><topic>Proteins</topic><topic>Regional Blood Flow - physiology</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Messenger - biosynthesis</topic><topic>Striated muscle. Tendons</topic><topic>Transforming Growth Factor beta - biosynthesis</topic><topic>Vascular Endothelial Growth Factor A</topic><topic>Vascular Endothelial Growth Factors</topic><topic>Vertebrates: osteoarticular system, musculoskeletal system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roca, Josep</creatorcontrib><creatorcontrib>Gavin, Timothy P</creatorcontrib><creatorcontrib>Jordan, Maria</creatorcontrib><creatorcontrib>Siafakas, Nikos</creatorcontrib><creatorcontrib>Wagner, Harrieth</creatorcontrib><creatorcontrib>Benoit, Henri</creatorcontrib><creatorcontrib>Breen, Ellen</creatorcontrib><creatorcontrib>Wagner, Peter D</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied physiology (1985)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roca, Josep</au><au>Gavin, Timothy P</au><au>Jordan, Maria</au><au>Siafakas, Nikos</au><au>Wagner, Harrieth</au><au>Benoit, Henri</au><au>Breen, Ellen</au><au>Wagner, Peter D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angiogenic growth factor mRNA responses to passive and contraction-induced hyperperfusion in skeletal muscle</atitle><jtitle>Journal of applied physiology (1985)</jtitle><addtitle>J Appl Physiol (1985)</addtitle><date>1998-09-01</date><risdate>1998</risdate><volume>85</volume><issue>3</issue><spage>1142</spage><epage>1149</epage><pages>1142-1149</pages><issn>8750-7587</issn><eissn>1522-1601</eissn><coden>JAPHEV</coden><abstract>Department of Medicine, University of California, San Diego, La Jolla, California 92093-0623 It has been proposed that, in skeletal muscle, the angiogenic response to exercise may be signaled by the increase in muscle blood flow, via biomechanical changes in the microcirculation (increased shear stress and/or wall tension). To examine this hypothesis, we compared the change in abundance of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and transforming growth factor- 1 (TGF- 1 ) mRNA in skeletal muscles of the canine leg after 1 h of pump-controlled high blood flow alone (passive hyperperfusion; protocol A ) and electrical stimulation of the femoral and sciatic nerves producing muscle contraction ( protocol B ). The increase in leg blood flow (5.4- and 5.9-fold change from resting values, respectively) was similar in both groups. Passive hyperperfusion alone did not increase message abundance for VEGF (ratio of mRNA to 18S signals after vs. before hyperperfusion, 0.94 ± 0.08) or bFGF (1.08 ± 0.05) but slightly increased that of TGF- 1 (1.14 ± 0.07; P  &lt; 0.03). In contrast, as previously found in the rat, electrical stimulation provoked more than a threefold increase in VEGF mRNA abundance (3.40 ± 1.45; P  &lt; 0.02). However, electrical stimulation produced no significant changes in either bFGF (1.16 ± 0.13) or TGF- 1 (1.31 ± 0.27). These results suggest that the increased muscle blood flow of exercise does not account for the increased abundance of these angiogenic growth factor mRNA levels in response to acute exercise. We speculate that other factors, such as local hypoxia, metabolite concentration changes, or mechanical effects of contraction per se, may be responsible for the effects of exercise. vascular endothelial growth factor; basic fibroblast growth factor; transforming growth factor; Northern analysis</abstract><cop>Bethesda, MD</cop><pub>Am Physiological Soc</pub><pmid>9729593</pmid><doi>10.1152/jappl.1998.85.3.1142</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 8750-7587
ispartof Journal of applied physiology (1985), 1998-09, Vol.85 (3), p.1142-1149
issn 8750-7587
1522-1601
language eng
recordid cdi_proquest_miscellaneous_73898448
source MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Anatomy & physiology
Animals
Biological and medical sciences
Blood Pressure - physiology
Blotting, Northern
Dogs
Endothelial Growth Factors - biosynthesis
Exercise
Female
Fibroblast Growth Factor 2 - biosynthesis
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation - physiology
Lymphokines - biosynthesis
Male
Muscle Contraction - physiology
Muscle, Skeletal - blood supply
Muscle, Skeletal - metabolism
Muscular system
Perfusion
Proteins
Regional Blood Flow - physiology
Ribonucleic acid
RNA
RNA, Messenger - biosynthesis
Striated muscle. Tendons
Transforming Growth Factor beta - biosynthesis
Vascular Endothelial Growth Factor A
Vascular Endothelial Growth Factors
Vertebrates: osteoarticular system, musculoskeletal system
title Angiogenic growth factor mRNA responses to passive and contraction-induced hyperperfusion in skeletal muscle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angiogenic%20growth%20factor%20mRNA%20responses%20to%20passive%20and%20contraction-induced%20hyperperfusion%20in%20skeletal%20muscle&rft.jtitle=Journal%20of%20applied%20physiology%20(1985)&rft.au=Roca,%20Josep&rft.date=1998-09-01&rft.volume=85&rft.issue=3&rft.spage=1142&rft.epage=1149&rft.pages=1142-1149&rft.issn=8750-7587&rft.eissn=1522-1601&rft.coden=JAPHEV&rft_id=info:doi/10.1152/jappl.1998.85.3.1142&rft_dat=%3Cproquest_pasca%3E34767086%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222203623&rft_id=info:pmid/9729593&rfr_iscdi=true