Calbindin D28k expression in immunohistochemically identified Renshaw cells

DOUBLE immunofluorescence was utilized to determine whether Renshaw cells contain calbindin D28k immunoreactivity. Renshaw cells were identified by their characteristic expression patterns of gephyrin immunoreactivity in sections of rat and cat lumbar spinal cord. In the rat, all neurons classified...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroreport 1998-08, Vol.9 (11), p.2657-2661
Hauptverfasser: Carr, Patrick A, Alvarez, Francisco J, Leman, Elizabeth A, W. Fyffe, Robert E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2661
container_issue 11
container_start_page 2657
container_title Neuroreport
container_volume 9
creator Carr, Patrick A
Alvarez, Francisco J
Leman, Elizabeth A
W. Fyffe, Robert E
description DOUBLE immunofluorescence was utilized to determine whether Renshaw cells contain calbindin D28k immunoreactivity. Renshaw cells were identified by their characteristic expression patterns of gephyrin immunoreactivity in sections of rat and cat lumbar spinal cord. In the rat, all neurons classified as Renshaw cells (n = 487) also contained calbindin D28k-immunoreactivity, and all calbindin D28k-immunoreactive cells located in the ventral-most region of lamina VII expressed the characteristic gephyrin labeling and morphology of Renshaw cells. In the cat, fewer than half of the Renshaw cells (47%; n = 128) were double-labeled. In both species, occasional calbindin D28k-immunoreactive Renshaw cells were identified within motor nuclei in lamina IX. The distinctive immunolabeling of Renshaw cells allowed us to estimate that there are about 250 Renshaw cells in each ventral horn of the fourth lumbar segment of rat spinal cord, and about 750 cells per ventral horn in the L6 segment of the cat. We conclude that the functional properties of Renshaw cells, including their ability to fire action potentials at high rates, likely require specific homeostatic mechanisms including strong intracellular calcium buffering, the precise mechanisms of which may vary between species.
doi_str_mv 10.1097/00001756-199808030-00043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73889501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17101515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4153-f56ed2489dae5d52a605160faf4205f4b3fc3f68e16ecd36a6e6d081a4de98183</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVoSDeb_ISAD6U3pxrrw9KxbD8SGiiEFnoTWmuElcj2VrLZ7r-vt7tJTyFzGZh5553hGUIKoNdAdf2BzgG1kCVoraiijJZzhbMTsgBes1II9esNWVAtdMm1FG_Jec4Ps0RTUGfkTNcVaAEL8m1l4zr0LvTFp0o9FvhnkzDnMPTFXApdN_VDG_I4NC12obEx7orgsB-DD-iKe-xza7dFgzHmC3Lqbcx4ecxL8vPL5x-rm_Lu-9fb1ce7suEgWOmFRFdxpZ1F4URlJRUgqbeeV1R4vma-YV4qBImNY9JKlI4qsNyhVqDYkrw_-G7S8HvCPJou5P0FtsdhyqZmSmlB4VUh1EBBzDctiToImzTknNCbTQqdTTsD1OyBmyfg5hm4-Qd8Hr067pjWHbrnwSPhuf_u2Ld5xueT7ZuQ__tLypTc2_CDbDvEEVN-jNMWk2nRxrE1L72b_QXRuZfi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17101515</pqid></control><display><type>article</type><title>Calbindin D28k expression in immunohistochemically identified Renshaw cells</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><creator>Carr, Patrick A ; Alvarez, Francisco J ; Leman, Elizabeth A ; W. Fyffe, Robert E</creator><creatorcontrib>Carr, Patrick A ; Alvarez, Francisco J ; Leman, Elizabeth A ; W. Fyffe, Robert E</creatorcontrib><description>DOUBLE immunofluorescence was utilized to determine whether Renshaw cells contain calbindin D28k immunoreactivity. Renshaw cells were identified by their characteristic expression patterns of gephyrin immunoreactivity in sections of rat and cat lumbar spinal cord. In the rat, all neurons classified as Renshaw cells (n = 487) also contained calbindin D28k-immunoreactivity, and all calbindin D28k-immunoreactive cells located in the ventral-most region of lamina VII expressed the characteristic gephyrin labeling and morphology of Renshaw cells. In the cat, fewer than half of the Renshaw cells (47%; n = 128) were double-labeled. In both species, occasional calbindin D28k-immunoreactive Renshaw cells were identified within motor nuclei in lamina IX. The distinctive immunolabeling of Renshaw cells allowed us to estimate that there are about 250 Renshaw cells in each ventral horn of the fourth lumbar segment of rat spinal cord, and about 750 cells per ventral horn in the L6 segment of the cat. We conclude that the functional properties of Renshaw cells, including their ability to fire action potentials at high rates, likely require specific homeostatic mechanisms including strong intracellular calcium buffering, the precise mechanisms of which may vary between species.</description><identifier>ISSN: 0959-4965</identifier><identifier>EISSN: 1473-558X</identifier><identifier>DOI: 10.1097/00001756-199808030-00043</identifier><identifier>PMID: 9721951</identifier><language>eng</language><publisher>Hagerstown, MD: Lippincott-Raven Publishers</publisher><subject>Anatomy ; Animals ; Biological and medical sciences ; Calbindin 1 ; Calbindins ; Carrier Proteins - biosynthesis ; Cats ; Central nervous system ; Fundamental and applied biological sciences. Psychology ; Immunohistochemistry ; Interneurons - metabolism ; Male ; Membrane Proteins - biosynthesis ; Nerve Tissue Proteins - biosynthesis ; Rats ; Rats, Sprague-Dawley ; S100 Calcium Binding Protein G - biosynthesis ; Spinal Cord - cytology ; Spinal Cord - metabolism ; Vertebrates: nervous system and sense organs</subject><ispartof>Neuroreport, 1998-08, Vol.9 (11), p.2657-2661</ispartof><rights>Lippincott-Raven Publishers.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4153-f56ed2489dae5d52a605160faf4205f4b3fc3f68e16ecd36a6e6d081a4de98183</citedby><cites>FETCH-LOGICAL-c4153-f56ed2489dae5d52a605160faf4205f4b3fc3f68e16ecd36a6e6d081a4de98183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1603863$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9721951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carr, Patrick A</creatorcontrib><creatorcontrib>Alvarez, Francisco J</creatorcontrib><creatorcontrib>Leman, Elizabeth A</creatorcontrib><creatorcontrib>W. Fyffe, Robert E</creatorcontrib><title>Calbindin D28k expression in immunohistochemically identified Renshaw cells</title><title>Neuroreport</title><addtitle>Neuroreport</addtitle><description>DOUBLE immunofluorescence was utilized to determine whether Renshaw cells contain calbindin D28k immunoreactivity. Renshaw cells were identified by their characteristic expression patterns of gephyrin immunoreactivity in sections of rat and cat lumbar spinal cord. In the rat, all neurons classified as Renshaw cells (n = 487) also contained calbindin D28k-immunoreactivity, and all calbindin D28k-immunoreactive cells located in the ventral-most region of lamina VII expressed the characteristic gephyrin labeling and morphology of Renshaw cells. In the cat, fewer than half of the Renshaw cells (47%; n = 128) were double-labeled. In both species, occasional calbindin D28k-immunoreactive Renshaw cells were identified within motor nuclei in lamina IX. The distinctive immunolabeling of Renshaw cells allowed us to estimate that there are about 250 Renshaw cells in each ventral horn of the fourth lumbar segment of rat spinal cord, and about 750 cells per ventral horn in the L6 segment of the cat. We conclude that the functional properties of Renshaw cells, including their ability to fire action potentials at high rates, likely require specific homeostatic mechanisms including strong intracellular calcium buffering, the precise mechanisms of which may vary between species.</description><subject>Anatomy</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Calbindin 1</subject><subject>Calbindins</subject><subject>Carrier Proteins - biosynthesis</subject><subject>Cats</subject><subject>Central nervous system</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Immunohistochemistry</subject><subject>Interneurons - metabolism</subject><subject>Male</subject><subject>Membrane Proteins - biosynthesis</subject><subject>Nerve Tissue Proteins - biosynthesis</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>S100 Calcium Binding Protein G - biosynthesis</subject><subject>Spinal Cord - cytology</subject><subject>Spinal Cord - metabolism</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0959-4965</issn><issn>1473-558X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r3DAQhkVoSDeb_ISAD6U3pxrrw9KxbD8SGiiEFnoTWmuElcj2VrLZ7r-vt7tJTyFzGZh5553hGUIKoNdAdf2BzgG1kCVoraiijJZzhbMTsgBes1II9esNWVAtdMm1FG_Jec4Ps0RTUGfkTNcVaAEL8m1l4zr0LvTFp0o9FvhnkzDnMPTFXApdN_VDG_I4NC12obEx7orgsB-DD-iKe-xza7dFgzHmC3Lqbcx4ecxL8vPL5x-rm_Lu-9fb1ce7suEgWOmFRFdxpZ1F4URlJRUgqbeeV1R4vma-YV4qBImNY9JKlI4qsNyhVqDYkrw_-G7S8HvCPJou5P0FtsdhyqZmSmlB4VUh1EBBzDctiToImzTknNCbTQqdTTsD1OyBmyfg5hm4-Qd8Hr067pjWHbrnwSPhuf_u2Ld5xueT7ZuQ__tLypTc2_CDbDvEEVN-jNMWk2nRxrE1L72b_QXRuZfi</recordid><startdate>19980803</startdate><enddate>19980803</enddate><creator>Carr, Patrick A</creator><creator>Alvarez, Francisco J</creator><creator>Leman, Elizabeth A</creator><creator>W. Fyffe, Robert E</creator><general>Lippincott-Raven Publishers</general><general>Lippincott Williams and Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>19980803</creationdate><title>Calbindin D28k expression in immunohistochemically identified Renshaw cells</title><author>Carr, Patrick A ; Alvarez, Francisco J ; Leman, Elizabeth A ; W. Fyffe, Robert E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4153-f56ed2489dae5d52a605160faf4205f4b3fc3f68e16ecd36a6e6d081a4de98183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Anatomy</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Calbindin 1</topic><topic>Calbindins</topic><topic>Carrier Proteins - biosynthesis</topic><topic>Cats</topic><topic>Central nervous system</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Immunohistochemistry</topic><topic>Interneurons - metabolism</topic><topic>Male</topic><topic>Membrane Proteins - biosynthesis</topic><topic>Nerve Tissue Proteins - biosynthesis</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>S100 Calcium Binding Protein G - biosynthesis</topic><topic>Spinal Cord - cytology</topic><topic>Spinal Cord - metabolism</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carr, Patrick A</creatorcontrib><creatorcontrib>Alvarez, Francisco J</creatorcontrib><creatorcontrib>Leman, Elizabeth A</creatorcontrib><creatorcontrib>W. Fyffe, Robert E</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroreport</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carr, Patrick A</au><au>Alvarez, Francisco J</au><au>Leman, Elizabeth A</au><au>W. Fyffe, Robert E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calbindin D28k expression in immunohistochemically identified Renshaw cells</atitle><jtitle>Neuroreport</jtitle><addtitle>Neuroreport</addtitle><date>1998-08-03</date><risdate>1998</risdate><volume>9</volume><issue>11</issue><spage>2657</spage><epage>2661</epage><pages>2657-2661</pages><issn>0959-4965</issn><eissn>1473-558X</eissn><abstract>DOUBLE immunofluorescence was utilized to determine whether Renshaw cells contain calbindin D28k immunoreactivity. Renshaw cells were identified by their characteristic expression patterns of gephyrin immunoreactivity in sections of rat and cat lumbar spinal cord. In the rat, all neurons classified as Renshaw cells (n = 487) also contained calbindin D28k-immunoreactivity, and all calbindin D28k-immunoreactive cells located in the ventral-most region of lamina VII expressed the characteristic gephyrin labeling and morphology of Renshaw cells. In the cat, fewer than half of the Renshaw cells (47%; n = 128) were double-labeled. In both species, occasional calbindin D28k-immunoreactive Renshaw cells were identified within motor nuclei in lamina IX. The distinctive immunolabeling of Renshaw cells allowed us to estimate that there are about 250 Renshaw cells in each ventral horn of the fourth lumbar segment of rat spinal cord, and about 750 cells per ventral horn in the L6 segment of the cat. We conclude that the functional properties of Renshaw cells, including their ability to fire action potentials at high rates, likely require specific homeostatic mechanisms including strong intracellular calcium buffering, the precise mechanisms of which may vary between species.</abstract><cop>Hagerstown, MD</cop><pub>Lippincott-Raven Publishers</pub><pmid>9721951</pmid><doi>10.1097/00001756-199808030-00043</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0959-4965
ispartof Neuroreport, 1998-08, Vol.9 (11), p.2657-2661
issn 0959-4965
1473-558X
language eng
recordid cdi_proquest_miscellaneous_73889501
source MEDLINE; Journals@Ovid Complete
subjects Anatomy
Animals
Biological and medical sciences
Calbindin 1
Calbindins
Carrier Proteins - biosynthesis
Cats
Central nervous system
Fundamental and applied biological sciences. Psychology
Immunohistochemistry
Interneurons - metabolism
Male
Membrane Proteins - biosynthesis
Nerve Tissue Proteins - biosynthesis
Rats
Rats, Sprague-Dawley
S100 Calcium Binding Protein G - biosynthesis
Spinal Cord - cytology
Spinal Cord - metabolism
Vertebrates: nervous system and sense organs
title Calbindin D28k expression in immunohistochemically identified Renshaw cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calbindin%20D28k%20expression%20in%20immunohistochemically%20identified%20Renshaw%20cells&rft.jtitle=Neuroreport&rft.au=Carr,%20Patrick%20A&rft.date=1998-08-03&rft.volume=9&rft.issue=11&rft.spage=2657&rft.epage=2661&rft.pages=2657-2661&rft.issn=0959-4965&rft.eissn=1473-558X&rft_id=info:doi/10.1097/00001756-199808030-00043&rft_dat=%3Cproquest_cross%3E17101515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17101515&rft_id=info:pmid/9721951&rfr_iscdi=true