The Role of 3′-5′ Exonucleolytic Proofreading and Mismatch Repair in Yeast Mitochondrial DNA Error Avoidance

In the D171G/D230A mutant generated at conserved aspartate residues in the Exo1 and Exo2 sites of the 3′-5′ exonuclease domain of the yeast mitochondrial DNA (mtDNA) polymerase (pol-γ), the mitochondrial genome is unstable and the frequency of mtDNA point mutations is 1500 times higher than in the w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1998-09, Vol.273 (37), p.23690-23697
Hauptverfasser: Vanderstraeten, Sylvie, Van den Brûle, Sybille, Hu, Jingping, Foury, Françoise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23697
container_issue 37
container_start_page 23690
container_title The Journal of biological chemistry
container_volume 273
creator Vanderstraeten, Sylvie
Van den Brûle, Sybille
Hu, Jingping
Foury, Françoise
description In the D171G/D230A mutant generated at conserved aspartate residues in the Exo1 and Exo2 sites of the 3′-5′ exonuclease domain of the yeast mitochondrial DNA (mtDNA) polymerase (pol-γ), the mitochondrial genome is unstable and the frequency of mtDNA point mutations is 1500 times higher than in the wild-type strain and 10 times higher than in single substitution mutants. The 104-fold decrease in the 3′-5′ exonuclease activity of the purified mtDNA polymerase is associated with mismatch extension and high rates of base misincorporation. Processivity of the purified polymerase on primed single-stranded DNA is decreased and theKm for dNTP is increased. The sequencing of mtDNA point mutations in the wild-type strain and in proofreading and mismatch-repair deficient mutants shows that mismatch repair contributes to elimination of the transitions while exonucleolytic proofreading preferentially repairs transversions, and more specifically A to T (or T to A) transversions. However, even in the wild-type strain, A to T (or T to A) transversions are the most frequent substitutions, suggesting that they are imperfectly repaired. The combination of both mismatch repair and proofreading deficiencies elicits a mitochondrial error catastrophe. These data show that the faithful replication of yeast mtDNA requires both exonucleolytic proofreading and mismatch repair.
doi_str_mv 10.1074/jbc.273.37.23690
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73888032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819601924</els_id><sourcerecordid>16560109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-928dc5cc1cde625a678916dc395e7cbf27357eb1e20bf8e91ea32f2b62eb8d573</originalsourceid><addsrcrecordid>eNqFUctuEzEUtaqiEgp7NkhedTfBj_jVXVQCVCpQlVaiK8tj32lcTcbBnlR0xzf1k_gSDIlgVfUu7l2cc1_nIPSakiklavb2tvVTpviUqynj0pA9NKFE84YL-m0fTQhhtDFM6OfoRSm3pMbM0AN0YBSTRs0maH25BHyResCpw_zXz4dG1IQXP9Kw8T2k_n6MHp_nlLoMLsThBrsh4E-xrNzol_gC1i5mHAd8Da6MFRiTX6Yh5Oh6_O7zHC9yThnP71IMbvDwEj3rXF_g1a4eoqv3i8uTj83Zlw-nJ_Ozxgsix3q0Dl54T30AyYSTShsqg-dGgPJtV58WCloKjLSdBkPBcdaxVjJodRCKH6Kj7dx1Tt83UEa7isVD37sB0qZYxbXWhLMniVQKSSgxlUi2RJ9TKRk6u85x5fK9pcT-ccNWN2w9zHJl_7pRW97sZm_aFYR_DTv5_-OdS9bd5Fjs1VdqjCKGMC0qfrzFoSp1FyHb4iNUFUPM4EcbUnx8-W8qiKQu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16560109</pqid></control><display><type>article</type><title>The Role of 3′-5′ Exonucleolytic Proofreading and Mismatch Repair in Yeast Mitochondrial DNA Error Avoidance</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Vanderstraeten, Sylvie ; Van den Brûle, Sybille ; Hu, Jingping ; Foury, Françoise</creator><creatorcontrib>Vanderstraeten, Sylvie ; Van den Brûle, Sybille ; Hu, Jingping ; Foury, Françoise</creatorcontrib><description>In the D171G/D230A mutant generated at conserved aspartate residues in the Exo1 and Exo2 sites of the 3′-5′ exonuclease domain of the yeast mitochondrial DNA (mtDNA) polymerase (pol-γ), the mitochondrial genome is unstable and the frequency of mtDNA point mutations is 1500 times higher than in the wild-type strain and 10 times higher than in single substitution mutants. The 104-fold decrease in the 3′-5′ exonuclease activity of the purified mtDNA polymerase is associated with mismatch extension and high rates of base misincorporation. Processivity of the purified polymerase on primed single-stranded DNA is decreased and theKm for dNTP is increased. The sequencing of mtDNA point mutations in the wild-type strain and in proofreading and mismatch-repair deficient mutants shows that mismatch repair contributes to elimination of the transitions while exonucleolytic proofreading preferentially repairs transversions, and more specifically A to T (or T to A) transversions. However, even in the wild-type strain, A to T (or T to A) transversions are the most frequent substitutions, suggesting that they are imperfectly repaired. The combination of both mismatch repair and proofreading deficiencies elicits a mitochondrial error catastrophe. These data show that the faithful replication of yeast mtDNA requires both exonucleolytic proofreading and mismatch repair.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.273.37.23690</identifier><identifier>PMID: 9726974</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ACTIVIDAD ENZIMATICA ; ACTIVITE ENZYMATIQUE ; ADN ; Base Sequence ; DNA ; DNA MODIFICATION ; DNA POLYMERASE ; DNA Polymerase gamma ; DNA PROOFREADING ; DNA REPAIR ; DNA REPLICATION ; DNA, Mitochondrial - biosynthesis ; DNA, Mitochondrial - genetics ; DNA, Single-Stranded - biosynthesis ; DNA, Single-Stranded - genetics ; DNA-Directed DNA Polymerase - metabolism ; Endodeoxyribonucleases - metabolism ; ENZYMIC ACTIVITY ; Exodeoxyribonuclease V ; Exodeoxyribonucleases - metabolism ; Genome, Fungal ; Kinetics ; MITOCHONDRIA ; MITOCHONDRIE ; MITOCONDRIA ; Mitosis ; MUTACION ; MUTANT ; MUTANTES ; MUTANTS ; MUTATION ; NUCLEASAS ; NUCLEASE ; NUCLEASES ; Point Mutation ; POINT MUTATIONS ; REPLICACION ; REPLICATION ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Species Specificity ; Templates, Genetic ; TRANSFERASAS ; TRANSFERASE ; TRANSFERASES</subject><ispartof>The Journal of biological chemistry, 1998-09, Vol.273 (37), p.23690-23697</ispartof><rights>1998 © 1998 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-928dc5cc1cde625a678916dc395e7cbf27357eb1e20bf8e91ea32f2b62eb8d573</citedby><cites>FETCH-LOGICAL-c506t-928dc5cc1cde625a678916dc395e7cbf27357eb1e20bf8e91ea32f2b62eb8d573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9726974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vanderstraeten, Sylvie</creatorcontrib><creatorcontrib>Van den Brûle, Sybille</creatorcontrib><creatorcontrib>Hu, Jingping</creatorcontrib><creatorcontrib>Foury, Françoise</creatorcontrib><title>The Role of 3′-5′ Exonucleolytic Proofreading and Mismatch Repair in Yeast Mitochondrial DNA Error Avoidance</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>In the D171G/D230A mutant generated at conserved aspartate residues in the Exo1 and Exo2 sites of the 3′-5′ exonuclease domain of the yeast mitochondrial DNA (mtDNA) polymerase (pol-γ), the mitochondrial genome is unstable and the frequency of mtDNA point mutations is 1500 times higher than in the wild-type strain and 10 times higher than in single substitution mutants. The 104-fold decrease in the 3′-5′ exonuclease activity of the purified mtDNA polymerase is associated with mismatch extension and high rates of base misincorporation. Processivity of the purified polymerase on primed single-stranded DNA is decreased and theKm for dNTP is increased. The sequencing of mtDNA point mutations in the wild-type strain and in proofreading and mismatch-repair deficient mutants shows that mismatch repair contributes to elimination of the transitions while exonucleolytic proofreading preferentially repairs transversions, and more specifically A to T (or T to A) transversions. However, even in the wild-type strain, A to T (or T to A) transversions are the most frequent substitutions, suggesting that they are imperfectly repaired. The combination of both mismatch repair and proofreading deficiencies elicits a mitochondrial error catastrophe. These data show that the faithful replication of yeast mtDNA requires both exonucleolytic proofreading and mismatch repair.</description><subject>ACTIVIDAD ENZIMATICA</subject><subject>ACTIVITE ENZYMATIQUE</subject><subject>ADN</subject><subject>Base Sequence</subject><subject>DNA</subject><subject>DNA MODIFICATION</subject><subject>DNA POLYMERASE</subject><subject>DNA Polymerase gamma</subject><subject>DNA PROOFREADING</subject><subject>DNA REPAIR</subject><subject>DNA REPLICATION</subject><subject>DNA, Mitochondrial - biosynthesis</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Single-Stranded - biosynthesis</subject><subject>DNA, Single-Stranded - genetics</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>Endodeoxyribonucleases - metabolism</subject><subject>ENZYMIC ACTIVITY</subject><subject>Exodeoxyribonuclease V</subject><subject>Exodeoxyribonucleases - metabolism</subject><subject>Genome, Fungal</subject><subject>Kinetics</subject><subject>MITOCHONDRIA</subject><subject>MITOCHONDRIE</subject><subject>MITOCONDRIA</subject><subject>Mitosis</subject><subject>MUTACION</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>MUTATION</subject><subject>NUCLEASAS</subject><subject>NUCLEASE</subject><subject>NUCLEASES</subject><subject>Point Mutation</subject><subject>POINT MUTATIONS</subject><subject>REPLICACION</subject><subject>REPLICATION</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Species Specificity</subject><subject>Templates, Genetic</subject><subject>TRANSFERASAS</subject><subject>TRANSFERASE</subject><subject>TRANSFERASES</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUctuEzEUtaqiEgp7NkhedTfBj_jVXVQCVCpQlVaiK8tj32lcTcbBnlR0xzf1k_gSDIlgVfUu7l2cc1_nIPSakiklavb2tvVTpviUqynj0pA9NKFE84YL-m0fTQhhtDFM6OfoRSm3pMbM0AN0YBSTRs0maH25BHyResCpw_zXz4dG1IQXP9Kw8T2k_n6MHp_nlLoMLsThBrsh4E-xrNzol_gC1i5mHAd8Da6MFRiTX6Yh5Oh6_O7zHC9yThnP71IMbvDwEj3rXF_g1a4eoqv3i8uTj83Zlw-nJ_Ozxgsix3q0Dl54T30AyYSTShsqg-dGgPJtV58WCloKjLSdBkPBcdaxVjJodRCKH6Kj7dx1Tt83UEa7isVD37sB0qZYxbXWhLMniVQKSSgxlUi2RJ9TKRk6u85x5fK9pcT-ccNWN2w9zHJl_7pRW97sZm_aFYR_DTv5_-OdS9bd5Fjs1VdqjCKGMC0qfrzFoSp1FyHb4iNUFUPM4EcbUnx8-W8qiKQu</recordid><startdate>19980911</startdate><enddate>19980911</enddate><creator>Vanderstraeten, Sylvie</creator><creator>Van den Brûle, Sybille</creator><creator>Hu, Jingping</creator><creator>Foury, Françoise</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>19980911</creationdate><title>The Role of 3′-5′ Exonucleolytic Proofreading and Mismatch Repair in Yeast Mitochondrial DNA Error Avoidance</title><author>Vanderstraeten, Sylvie ; Van den Brûle, Sybille ; Hu, Jingping ; Foury, Françoise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-928dc5cc1cde625a678916dc395e7cbf27357eb1e20bf8e91ea32f2b62eb8d573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>ACTIVIDAD ENZIMATICA</topic><topic>ACTIVITE ENZYMATIQUE</topic><topic>ADN</topic><topic>Base Sequence</topic><topic>DNA</topic><topic>DNA MODIFICATION</topic><topic>DNA POLYMERASE</topic><topic>DNA Polymerase gamma</topic><topic>DNA PROOFREADING</topic><topic>DNA REPAIR</topic><topic>DNA REPLICATION</topic><topic>DNA, Mitochondrial - biosynthesis</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Single-Stranded - biosynthesis</topic><topic>DNA, Single-Stranded - genetics</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>Endodeoxyribonucleases - metabolism</topic><topic>ENZYMIC ACTIVITY</topic><topic>Exodeoxyribonuclease V</topic><topic>Exodeoxyribonucleases - metabolism</topic><topic>Genome, Fungal</topic><topic>Kinetics</topic><topic>MITOCHONDRIA</topic><topic>MITOCHONDRIE</topic><topic>MITOCONDRIA</topic><topic>Mitosis</topic><topic>MUTACION</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>MUTATION</topic><topic>NUCLEASAS</topic><topic>NUCLEASE</topic><topic>NUCLEASES</topic><topic>Point Mutation</topic><topic>POINT MUTATIONS</topic><topic>REPLICACION</topic><topic>REPLICATION</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Species Specificity</topic><topic>Templates, Genetic</topic><topic>TRANSFERASAS</topic><topic>TRANSFERASE</topic><topic>TRANSFERASES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vanderstraeten, Sylvie</creatorcontrib><creatorcontrib>Van den Brûle, Sybille</creatorcontrib><creatorcontrib>Hu, Jingping</creatorcontrib><creatorcontrib>Foury, Françoise</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanderstraeten, Sylvie</au><au>Van den Brûle, Sybille</au><au>Hu, Jingping</au><au>Foury, Françoise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of 3′-5′ Exonucleolytic Proofreading and Mismatch Repair in Yeast Mitochondrial DNA Error Avoidance</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1998-09-11</date><risdate>1998</risdate><volume>273</volume><issue>37</issue><spage>23690</spage><epage>23697</epage><pages>23690-23697</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>In the D171G/D230A mutant generated at conserved aspartate residues in the Exo1 and Exo2 sites of the 3′-5′ exonuclease domain of the yeast mitochondrial DNA (mtDNA) polymerase (pol-γ), the mitochondrial genome is unstable and the frequency of mtDNA point mutations is 1500 times higher than in the wild-type strain and 10 times higher than in single substitution mutants. The 104-fold decrease in the 3′-5′ exonuclease activity of the purified mtDNA polymerase is associated with mismatch extension and high rates of base misincorporation. Processivity of the purified polymerase on primed single-stranded DNA is decreased and theKm for dNTP is increased. The sequencing of mtDNA point mutations in the wild-type strain and in proofreading and mismatch-repair deficient mutants shows that mismatch repair contributes to elimination of the transitions while exonucleolytic proofreading preferentially repairs transversions, and more specifically A to T (or T to A) transversions. However, even in the wild-type strain, A to T (or T to A) transversions are the most frequent substitutions, suggesting that they are imperfectly repaired. The combination of both mismatch repair and proofreading deficiencies elicits a mitochondrial error catastrophe. These data show that the faithful replication of yeast mtDNA requires both exonucleolytic proofreading and mismatch repair.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9726974</pmid><doi>10.1074/jbc.273.37.23690</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1998-09, Vol.273 (37), p.23690-23697
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_73888032
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects ACTIVIDAD ENZIMATICA
ACTIVITE ENZYMATIQUE
ADN
Base Sequence
DNA
DNA MODIFICATION
DNA POLYMERASE
DNA Polymerase gamma
DNA PROOFREADING
DNA REPAIR
DNA REPLICATION
DNA, Mitochondrial - biosynthesis
DNA, Mitochondrial - genetics
DNA, Single-Stranded - biosynthesis
DNA, Single-Stranded - genetics
DNA-Directed DNA Polymerase - metabolism
Endodeoxyribonucleases - metabolism
ENZYMIC ACTIVITY
Exodeoxyribonuclease V
Exodeoxyribonucleases - metabolism
Genome, Fungal
Kinetics
MITOCHONDRIA
MITOCHONDRIE
MITOCONDRIA
Mitosis
MUTACION
MUTANT
MUTANTES
MUTANTS
MUTATION
NUCLEASAS
NUCLEASE
NUCLEASES
Point Mutation
POINT MUTATIONS
REPLICACION
REPLICATION
SACCHAROMYCES CEREVISIAE
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Species Specificity
Templates, Genetic
TRANSFERASAS
TRANSFERASE
TRANSFERASES
title The Role of 3′-5′ Exonucleolytic Proofreading and Mismatch Repair in Yeast Mitochondrial DNA Error Avoidance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%203%E2%80%B2-5%E2%80%B2%20Exonucleolytic%20Proofreading%20and%20Mismatch%20Repair%20in%20Yeast%20Mitochondrial%20DNA%20Error%20Avoidance&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Vanderstraeten,%20Sylvie&rft.date=1998-09-11&rft.volume=273&rft.issue=37&rft.spage=23690&rft.epage=23697&rft.pages=23690-23697&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.273.37.23690&rft_dat=%3Cproquest_cross%3E16560109%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16560109&rft_id=info:pmid/9726974&rft_els_id=S0021925819601924&rfr_iscdi=true