Protection against cardiac anoxia--role and limitations of increased glycogen reserves in the isolated rat right ventricular strip

The effects of drugs on rat cardiac glycogen reserves in vivo, and on the subsequent in vitro sensitivity of the right ventricular strip preparation to anoxia have been investigated. Isoproterenol (0.2 mg/kg i.p.) causes immediate cardiac stimulation and reduction of glycogen reserves, coupled with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Basic research in cardiology 1981-11, Vol.76 (6), p.639-646
Hauptverfasser: Towart, R, Schlossmann, K, Kazda, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of drugs on rat cardiac glycogen reserves in vivo, and on the subsequent in vitro sensitivity of the right ventricular strip preparation to anoxia have been investigated. Isoproterenol (0.2 mg/kg i.p.) causes immediate cardiac stimulation and reduction of glycogen reserves, coupled with an increased susceptibility to anoxia. Several hours after administration, glycogen levels are found to be greatly (100-200%) increased, by a "supercompensation" mechanism, and a marked tolerance to anoxia can be simultaneously demonstrated. In contrast, large doses of corticosteroids (dexamethasone, 8 mg/kg i.m.) increase glycogen levels without initial stimulation and glycogen depletion; increased myocardial tolerance to anoxia parallels the increase in glycogen reserves in vivo. We conclude that the myocardial tolerance to anoxia in this model is related to increased glycogen reserves, which increase the rate and/or duration of anaerobic glycolysis during anoxia.
ISSN:0300-8428
1435-1803
DOI:10.1007/BF01908054