A method for assessing muscle fatigue during sprint exercise in humans using a friction-loaded cycle ergometer

This study investigated the mechanical changes induced by muscle fatigue caused by repeated sprints and determined whether a friction-loaded cycle ergometer has any advantages for assessing muscle fatigue. Nine subjects performed 15 sprints, each of 5 s with a 25-s rest, on a friction-loaded cycle e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of applied physiology 1998-08, Vol.78 (3), p.231-235
Hauptverfasser: HAUTIER, C. A, BELLI, A, LACOUR, J.-R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigated the mechanical changes induced by muscle fatigue caused by repeated sprints and determined whether a friction-loaded cycle ergometer has any advantages for assessing muscle fatigue. Nine subjects performed 15 sprints, each of 5 s with a 25-s rest, on a friction-loaded cycle ergometer. The averaged force, power and velocity of each push-off were calculated. Maximal power decreased by 17.9%, with a concomitant slowing of muscle contraction, but without any change in the maximal force. These results demonstrated that repeated sprints slow down muscle contraction, leading to a fall in maximal power without any loss of force. This would suggest that fast twitch fibres are selectively fatigued by repeated sprints. However, the ergometer used in the present study made it difficult to evaluate the relative influences of contraction velocity and sprinting time. This was certainly the most important limitation. On the other hand, it showed the advantage of measuring instantaneous power and total work dissipated in the environment simultaneously. It also permitted a force-velocity relationship to be obtained from a single sprint and this relationship is known to be closely related to the muscle fibre composition.
ISSN:0301-5548
1439-6319
1432-1025
1439-6327
DOI:10.1007/s004210050412