Molecular cloning and characterization of gilthead sea bream ( Sparus aurata) growth hormone receptor (GHR). Assessment of alternative splicing

The full-length growth hormone receptor (GHR) of gilthead sea bream ( Sparus aurata) was cloned and sequenced by RT-PCR and rapid amplification of 5′and 3′ends. The open reading frame codes for a mature 609 amino acid protein with a hydrophobic transmembrane region and all the characteristic motifs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 2003-09, Vol.136 (1), p.1-13
Hauptverfasser: Calduch-Giner, Josep A, Mingarro, Mónica, Vega-Rubı́n de Celis, Silvia, Boujard, Daniel, Pérez-Sánchez, Jaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 1
container_start_page 1
container_title Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology
container_volume 136
creator Calduch-Giner, Josep A
Mingarro, Mónica
Vega-Rubı́n de Celis, Silvia
Boujard, Daniel
Pérez-Sánchez, Jaume
description The full-length growth hormone receptor (GHR) of gilthead sea bream ( Sparus aurata) was cloned and sequenced by RT-PCR and rapid amplification of 5′and 3′ends. The open reading frame codes for a mature 609 amino acid protein with a hydrophobic transmembrane region and all the characteristic motifs of GHRs. Sequence analysis revealed a 96 and 76% of amino acid identity with black sea bream ( Acanthopagrus schlegeli) and turbot ( Scophthalmus maximus) GHRs, respectively, but this amino acid identity decreases up to 52% for goldfish ( Carassius auratus) GHR. By means of real-time PCR assays, concurrent changes in the hepatic expression of GHRs and insulin-like growth factor-I (IGF-I) was evidenced. Moreover, their regulation occurred in conjunction with the summer spurt of growth rates and circulating levels of GH and IGF-I. Search of alternative splicing was carried out exhaustively for gilthead sea bream GHR, but Northern blot and 3′ RACE failed to demonstrate the occurrence of short alternative messengers. Besides, RT-PCR screening did not reveal deletions or insertions that could lead to alternative reading frames. In agreement with this, cross-linking assays only evidenced two protein bands that match well with the size of glycosylated and non-glycosylated forms of the full-length GHR. If so, it appears that alternative splicing at the 3′end does not occur in gilthead sea bream, although different messengers for truncated or longer GHR variants already exist in turbot and black sea bream, respectively. The physiological relevance of this finding remains unclear, but perhaps it points out large inter-species differences in the heterogeneity of the GHR population.
doi_str_mv 10.1016/S1096-4959(03)00150-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73675502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096495903001507</els_id><sourcerecordid>18933507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-dee60ce9f6426889fa6af9fb96569f046ac55f7d2071222220622cdc518bbe0e3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS1ERUvhJ4B8QruHtONk7cQnVFXQIrWqROFsTZzJrlESB9tpBX-Cv0zSXcSxc5k5fO89aR5j7wScCRDq_F6AVtlGS72CYg0gJGTlC3YiqlJnQkD5cr7_IcfsdYw_AIpKFOIVOxa53ghVyBP259Z3ZKcOA7edH9yw5Tg03O4woE0U3G9Mzg_ct3zrurQjbHgk5HUg7PmK348YpshxCphwzbfBP6Yd3_nQ-4F4IEtj8oGvrq6_rs_4RYwUY09DWgyxmwOG2f-BeBw7Z-f0N-yoxS7S28M-Zd8_f_p2eZ3d3F19uby4yawUkLKGSIEl3apNrqpKt6iw1W2tlVS6hY1CK2VbNjmUIl8GVJ7bZhZXdU1AxSn7sPcdg_85UUymd9FS1-FAfoqmLFQpJeTPgqLSRSGhnEG5B23wMQZqzRhcj-GXEWCWysxTZWbpw0Bhniozi-79IWCqe2r-qw4dzcDHPUDzPx4cBROto8FS4-b_JtN490zEX8mgp6I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18933507</pqid></control><display><type>article</type><title>Molecular cloning and characterization of gilthead sea bream ( Sparus aurata) growth hormone receptor (GHR). Assessment of alternative splicing</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Calduch-Giner, Josep A ; Mingarro, Mónica ; Vega-Rubı́n de Celis, Silvia ; Boujard, Daniel ; Pérez-Sánchez, Jaume</creator><creatorcontrib>Calduch-Giner, Josep A ; Mingarro, Mónica ; Vega-Rubı́n de Celis, Silvia ; Boujard, Daniel ; Pérez-Sánchez, Jaume</creatorcontrib><description>The full-length growth hormone receptor (GHR) of gilthead sea bream ( Sparus aurata) was cloned and sequenced by RT-PCR and rapid amplification of 5′and 3′ends. The open reading frame codes for a mature 609 amino acid protein with a hydrophobic transmembrane region and all the characteristic motifs of GHRs. Sequence analysis revealed a 96 and 76% of amino acid identity with black sea bream ( Acanthopagrus schlegeli) and turbot ( Scophthalmus maximus) GHRs, respectively, but this amino acid identity decreases up to 52% for goldfish ( Carassius auratus) GHR. By means of real-time PCR assays, concurrent changes in the hepatic expression of GHRs and insulin-like growth factor-I (IGF-I) was evidenced. Moreover, their regulation occurred in conjunction with the summer spurt of growth rates and circulating levels of GH and IGF-I. Search of alternative splicing was carried out exhaustively for gilthead sea bream GHR, but Northern blot and 3′ RACE failed to demonstrate the occurrence of short alternative messengers. Besides, RT-PCR screening did not reveal deletions or insertions that could lead to alternative reading frames. In agreement with this, cross-linking assays only evidenced two protein bands that match well with the size of glycosylated and non-glycosylated forms of the full-length GHR. If so, it appears that alternative splicing at the 3′end does not occur in gilthead sea bream, although different messengers for truncated or longer GHR variants already exist in turbot and black sea bream, respectively. The physiological relevance of this finding remains unclear, but perhaps it points out large inter-species differences in the heterogeneity of the GHR population.</description><identifier>ISSN: 1096-4959</identifier><identifier>EISSN: 1879-1107</identifier><identifier>DOI: 10.1016/S1096-4959(03)00150-7</identifier><identifier>PMID: 12941635</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Acanthopagrus schlegeli ; Alternative Splicing ; Animals ; Base Sequence ; Carassius auratus ; Cloning and sequence ; Cloning, Molecular ; Cross-linking ; Evolution, Molecular ; Genetic Heterogeneity ; Gilthead sea bream ; Growth hormone receptor ; Insulin like growth factor-I ; Insulin-Like Growth Factor I - genetics ; Liver - metabolism ; Molecular Sequence Data ; Northern blot ; RACE analysis ; Real-time PCR ; Receptors, Somatotropin - genetics ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - analysis ; RT-PCR screening ; Scophthalmus maximus ; Sea Bream - genetics ; Sequence Analysis, Protein ; Sequence Homology ; Sparus aurata ; Teleost</subject><ispartof>Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2003-09, Vol.136 (1), p.1-13</ispartof><rights>2003 Elsevier Science Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-dee60ce9f6426889fa6af9fb96569f046ac55f7d2071222220622cdc518bbe0e3</citedby><cites>FETCH-LOGICAL-c510t-dee60ce9f6426889fa6af9fb96569f046ac55f7d2071222220622cdc518bbe0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1096495903001507$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12941635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Calduch-Giner, Josep A</creatorcontrib><creatorcontrib>Mingarro, Mónica</creatorcontrib><creatorcontrib>Vega-Rubı́n de Celis, Silvia</creatorcontrib><creatorcontrib>Boujard, Daniel</creatorcontrib><creatorcontrib>Pérez-Sánchez, Jaume</creatorcontrib><title>Molecular cloning and characterization of gilthead sea bream ( Sparus aurata) growth hormone receptor (GHR). Assessment of alternative splicing</title><title>Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology</title><addtitle>Comp Biochem Physiol B Biochem Mol Biol</addtitle><description>The full-length growth hormone receptor (GHR) of gilthead sea bream ( Sparus aurata) was cloned and sequenced by RT-PCR and rapid amplification of 5′and 3′ends. The open reading frame codes for a mature 609 amino acid protein with a hydrophobic transmembrane region and all the characteristic motifs of GHRs. Sequence analysis revealed a 96 and 76% of amino acid identity with black sea bream ( Acanthopagrus schlegeli) and turbot ( Scophthalmus maximus) GHRs, respectively, but this amino acid identity decreases up to 52% for goldfish ( Carassius auratus) GHR. By means of real-time PCR assays, concurrent changes in the hepatic expression of GHRs and insulin-like growth factor-I (IGF-I) was evidenced. Moreover, their regulation occurred in conjunction with the summer spurt of growth rates and circulating levels of GH and IGF-I. Search of alternative splicing was carried out exhaustively for gilthead sea bream GHR, but Northern blot and 3′ RACE failed to demonstrate the occurrence of short alternative messengers. Besides, RT-PCR screening did not reveal deletions or insertions that could lead to alternative reading frames. In agreement with this, cross-linking assays only evidenced two protein bands that match well with the size of glycosylated and non-glycosylated forms of the full-length GHR. If so, it appears that alternative splicing at the 3′end does not occur in gilthead sea bream, although different messengers for truncated or longer GHR variants already exist in turbot and black sea bream, respectively. The physiological relevance of this finding remains unclear, but perhaps it points out large inter-species differences in the heterogeneity of the GHR population.</description><subject>Acanthopagrus schlegeli</subject><subject>Alternative Splicing</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Carassius auratus</subject><subject>Cloning and sequence</subject><subject>Cloning, Molecular</subject><subject>Cross-linking</subject><subject>Evolution, Molecular</subject><subject>Genetic Heterogeneity</subject><subject>Gilthead sea bream</subject><subject>Growth hormone receptor</subject><subject>Insulin like growth factor-I</subject><subject>Insulin-Like Growth Factor I - genetics</subject><subject>Liver - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Northern blot</subject><subject>RACE analysis</subject><subject>Real-time PCR</subject><subject>Receptors, Somatotropin - genetics</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - analysis</subject><subject>RT-PCR screening</subject><subject>Scophthalmus maximus</subject><subject>Sea Bream - genetics</subject><subject>Sequence Analysis, Protein</subject><subject>Sequence Homology</subject><subject>Sparus aurata</subject><subject>Teleost</subject><issn>1096-4959</issn><issn>1879-1107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS1ERUvhJ4B8QruHtONk7cQnVFXQIrWqROFsTZzJrlESB9tpBX-Cv0zSXcSxc5k5fO89aR5j7wScCRDq_F6AVtlGS72CYg0gJGTlC3YiqlJnQkD5cr7_IcfsdYw_AIpKFOIVOxa53ghVyBP259Z3ZKcOA7edH9yw5Tg03O4woE0U3G9Mzg_ct3zrurQjbHgk5HUg7PmK348YpshxCphwzbfBP6Yd3_nQ-4F4IEtj8oGvrq6_rs_4RYwUY09DWgyxmwOG2f-BeBw7Z-f0N-yoxS7S28M-Zd8_f_p2eZ3d3F19uby4yawUkLKGSIEl3apNrqpKt6iw1W2tlVS6hY1CK2VbNjmUIl8GVJ7bZhZXdU1AxSn7sPcdg_85UUymd9FS1-FAfoqmLFQpJeTPgqLSRSGhnEG5B23wMQZqzRhcj-GXEWCWysxTZWbpw0Bhniozi-79IWCqe2r-qw4dzcDHPUDzPx4cBROto8FS4-b_JtN490zEX8mgp6I</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Calduch-Giner, Josep A</creator><creator>Mingarro, Mónica</creator><creator>Vega-Rubı́n de Celis, Silvia</creator><creator>Boujard, Daniel</creator><creator>Pérez-Sánchez, Jaume</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20030901</creationdate><title>Molecular cloning and characterization of gilthead sea bream ( Sparus aurata) growth hormone receptor (GHR). Assessment of alternative splicing</title><author>Calduch-Giner, Josep A ; Mingarro, Mónica ; Vega-Rubı́n de Celis, Silvia ; Boujard, Daniel ; Pérez-Sánchez, Jaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-dee60ce9f6426889fa6af9fb96569f046ac55f7d2071222220622cdc518bbe0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Acanthopagrus schlegeli</topic><topic>Alternative Splicing</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Carassius auratus</topic><topic>Cloning and sequence</topic><topic>Cloning, Molecular</topic><topic>Cross-linking</topic><topic>Evolution, Molecular</topic><topic>Genetic Heterogeneity</topic><topic>Gilthead sea bream</topic><topic>Growth hormone receptor</topic><topic>Insulin like growth factor-I</topic><topic>Insulin-Like Growth Factor I - genetics</topic><topic>Liver - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Northern blot</topic><topic>RACE analysis</topic><topic>Real-time PCR</topic><topic>Receptors, Somatotropin - genetics</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - analysis</topic><topic>RT-PCR screening</topic><topic>Scophthalmus maximus</topic><topic>Sea Bream - genetics</topic><topic>Sequence Analysis, Protein</topic><topic>Sequence Homology</topic><topic>Sparus aurata</topic><topic>Teleost</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calduch-Giner, Josep A</creatorcontrib><creatorcontrib>Mingarro, Mónica</creatorcontrib><creatorcontrib>Vega-Rubı́n de Celis, Silvia</creatorcontrib><creatorcontrib>Boujard, Daniel</creatorcontrib><creatorcontrib>Pérez-Sánchez, Jaume</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calduch-Giner, Josep A</au><au>Mingarro, Mónica</au><au>Vega-Rubı́n de Celis, Silvia</au><au>Boujard, Daniel</au><au>Pérez-Sánchez, Jaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular cloning and characterization of gilthead sea bream ( Sparus aurata) growth hormone receptor (GHR). Assessment of alternative splicing</atitle><jtitle>Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology</jtitle><addtitle>Comp Biochem Physiol B Biochem Mol Biol</addtitle><date>2003-09-01</date><risdate>2003</risdate><volume>136</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1096-4959</issn><eissn>1879-1107</eissn><abstract>The full-length growth hormone receptor (GHR) of gilthead sea bream ( Sparus aurata) was cloned and sequenced by RT-PCR and rapid amplification of 5′and 3′ends. The open reading frame codes for a mature 609 amino acid protein with a hydrophobic transmembrane region and all the characteristic motifs of GHRs. Sequence analysis revealed a 96 and 76% of amino acid identity with black sea bream ( Acanthopagrus schlegeli) and turbot ( Scophthalmus maximus) GHRs, respectively, but this amino acid identity decreases up to 52% for goldfish ( Carassius auratus) GHR. By means of real-time PCR assays, concurrent changes in the hepatic expression of GHRs and insulin-like growth factor-I (IGF-I) was evidenced. Moreover, their regulation occurred in conjunction with the summer spurt of growth rates and circulating levels of GH and IGF-I. Search of alternative splicing was carried out exhaustively for gilthead sea bream GHR, but Northern blot and 3′ RACE failed to demonstrate the occurrence of short alternative messengers. Besides, RT-PCR screening did not reveal deletions or insertions that could lead to alternative reading frames. In agreement with this, cross-linking assays only evidenced two protein bands that match well with the size of glycosylated and non-glycosylated forms of the full-length GHR. If so, it appears that alternative splicing at the 3′end does not occur in gilthead sea bream, although different messengers for truncated or longer GHR variants already exist in turbot and black sea bream, respectively. The physiological relevance of this finding remains unclear, but perhaps it points out large inter-species differences in the heterogeneity of the GHR population.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>12941635</pmid><doi>10.1016/S1096-4959(03)00150-7</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1096-4959
ispartof Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2003-09, Vol.136 (1), p.1-13
issn 1096-4959
1879-1107
language eng
recordid cdi_proquest_miscellaneous_73675502
source MEDLINE; Elsevier ScienceDirect Journals
subjects Acanthopagrus schlegeli
Alternative Splicing
Animals
Base Sequence
Carassius auratus
Cloning and sequence
Cloning, Molecular
Cross-linking
Evolution, Molecular
Genetic Heterogeneity
Gilthead sea bream
Growth hormone receptor
Insulin like growth factor-I
Insulin-Like Growth Factor I - genetics
Liver - metabolism
Molecular Sequence Data
Northern blot
RACE analysis
Real-time PCR
Receptors, Somatotropin - genetics
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - analysis
RT-PCR screening
Scophthalmus maximus
Sea Bream - genetics
Sequence Analysis, Protein
Sequence Homology
Sparus aurata
Teleost
title Molecular cloning and characterization of gilthead sea bream ( Sparus aurata) growth hormone receptor (GHR). Assessment of alternative splicing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A43%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20cloning%20and%20characterization%20of%20gilthead%20sea%20bream%20(%20Sparus%20aurata)%20growth%20hormone%20receptor%20(GHR).%20Assessment%20of%20alternative%20splicing&rft.jtitle=Comparative%20Biochemistry%20and%20Physiology%20Part%20B:%20Biochemistry%20and%20Molecular%20Biology&rft.au=Calduch-Giner,%20Josep%20A&rft.date=2003-09-01&rft.volume=136&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1096-4959&rft.eissn=1879-1107&rft_id=info:doi/10.1016/S1096-4959(03)00150-7&rft_dat=%3Cproquest_cross%3E18933507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18933507&rft_id=info:pmid/12941635&rft_els_id=S1096495903001507&rfr_iscdi=true