Investigation of the normal proximal somatomotor system using magnetoencephalography
Objective: The role of the ipsilateral cortex in proximal muscle control in normal human subjects is still under debate. One clinical finding, rapid recovery of proximal muscle relative to distal muscle use following stroke, has led to the suggestion that the ipsilateral as well as the contralateral...
Gespeichert in:
Veröffentlicht in: | Clinical neurophysiology 2003-10, Vol.114 (10), p.1781-1792 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1792 |
---|---|
container_issue | 10 |
container_start_page | 1781 |
container_title | Clinical neurophysiology |
container_volume | 114 |
creator | Stephen, Julia M Davis, Larry E Aine, Cheryl J Ranken, Doug Herman, Mark Hudson, David Huang, Mingxiong Poole, Janet |
description | Objective: The role of the ipsilateral cortex in proximal muscle control in normal human subjects is still under debate. One clinical finding, rapid recovery of proximal muscle relative to distal muscle use following stroke, has led to the suggestion that the ipsilateral as well as the contralateral motor cortex may be involved in normal proximal muscle control. The primary goal of this project was to identify contralateral and ipsilateral motor cortex activation associated with proximal muscle movement in normal subjects using magnetoencephalography (MEG).
Methods: We developed protocols for a self-paced bicep motor task and a deltoid, electrical-stimulation somatosensory task. The MEG data were analyzed using automated multi-dipole spatiotemporal modeling techniques to localize the sources and characterize the associated timing of these sources.
Results: Reliable contralateral primary motor and somatosensory sources localized to areas consistent with the homunculus. Ipsilateral M1 activation was only found in 2/12 hemispheres.
Conclusions: Robust contralateral motor cortex activation and sparse ipsilateral motor cortex activation suggest that the ipsilateral motor cortex is not involved in normal proximal muscle control.
Significance: The results suggest that proximal and distal muscle control is similar in normal subjects in the sense that proximal muscle control is primarily governed by the contralateral motor cortex. |
doi_str_mv | 10.1016/S1388-2457(03)00150-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73670447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1388245703001500</els_id><sourcerecordid>73670447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-17e611c3f1f6affecf236a988086335ab35e23da7deb6d3c12820b7aa85f6a223</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi1ERcvCTwDlAoJDij_ij5wQqoBWqtQD5WzNOuNdoyRebG_F_nuc7qIeOfk9PDOe9yHkDaOXjDL16QcTxrS8k_oDFR8pZZK29Bm5YEbz1vSSP6_5H3JOXub8i1KqacdfkHPWdX2vRX9B7m_mB8wlbKCEODfRN2WLzRzTBGOzS_FPWEKOE5Q4xRJTkw-54NTsc5g3zQSbGUvE2eFuC2PcJNhtD6_ImYcx4-vTuyI_v329v7pub---31x9uW1dZ1RpmUbFmBOeeQXeo_NcKOiNoUYJIWEtJHIxgB5wrQbhGDecrjWAkXWAc7Ei749766G_97WGnUJ2OI4wY9xnq4WqhTtdQXkEXYo5J_R2l2qxdLCM2kWnfdRpF1eWCvuos4YVeXv6YL-ecHiaOvmrwLsTANnB6BPMLuQnTrKOSrVwn48cVh0PAZPNLizWhpDQFTvE8J9T_gLcrJOi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73670447</pqid></control><display><type>article</type><title>Investigation of the normal proximal somatomotor system using magnetoencephalography</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Stephen, Julia M ; Davis, Larry E ; Aine, Cheryl J ; Ranken, Doug ; Herman, Mark ; Hudson, David ; Huang, Mingxiong ; Poole, Janet</creator><creatorcontrib>Stephen, Julia M ; Davis, Larry E ; Aine, Cheryl J ; Ranken, Doug ; Herman, Mark ; Hudson, David ; Huang, Mingxiong ; Poole, Janet</creatorcontrib><description>Objective: The role of the ipsilateral cortex in proximal muscle control in normal human subjects is still under debate. One clinical finding, rapid recovery of proximal muscle relative to distal muscle use following stroke, has led to the suggestion that the ipsilateral as well as the contralateral motor cortex may be involved in normal proximal muscle control. The primary goal of this project was to identify contralateral and ipsilateral motor cortex activation associated with proximal muscle movement in normal subjects using magnetoencephalography (MEG).
Methods: We developed protocols for a self-paced bicep motor task and a deltoid, electrical-stimulation somatosensory task. The MEG data were analyzed using automated multi-dipole spatiotemporal modeling techniques to localize the sources and characterize the associated timing of these sources.
Results: Reliable contralateral primary motor and somatosensory sources localized to areas consistent with the homunculus. Ipsilateral M1 activation was only found in 2/12 hemispheres.
Conclusions: Robust contralateral motor cortex activation and sparse ipsilateral motor cortex activation suggest that the ipsilateral motor cortex is not involved in normal proximal muscle control.
Significance: The results suggest that proximal and distal muscle control is similar in normal subjects in the sense that proximal muscle control is primarily governed by the contralateral motor cortex.</description><identifier>ISSN: 1388-2457</identifier><identifier>EISSN: 1872-8952</identifier><identifier>DOI: 10.1016/S1388-2457(03)00150-0</identifier><identifier>PMID: 14499739</identifier><language>eng</language><publisher>Shannon: Elsevier Ireland Ltd</publisher><subject>Adult ; Bicep ; Biological and medical sciences ; Brain Mapping ; Deltoid ; Electric Stimulation ; Electromagnetic Fields ; Female ; Functional Laterality - physiology ; Fundamental and applied biological sciences. Psychology ; Humans ; Ipsilateral motor cortex ; Magnetic Resonance Imaging ; Magnetoencephalography ; Male ; Middle Aged ; Monte Carlo Method ; Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration ; Motor Cortex - physiology ; Motor Skills ; Muscles - physiology ; Proximal arm ; Somatosensory ; Somatosensory Cortex - physiology ; Time Factors ; Vertebrates: nervous system and sense organs</subject><ispartof>Clinical neurophysiology, 2003-10, Vol.114 (10), p.1781-1792</ispartof><rights>2003 International Federation of Clinical Neurophysiology</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-17e611c3f1f6affecf236a988086335ab35e23da7deb6d3c12820b7aa85f6a223</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1388245703001500$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15140569$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14499739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stephen, Julia M</creatorcontrib><creatorcontrib>Davis, Larry E</creatorcontrib><creatorcontrib>Aine, Cheryl J</creatorcontrib><creatorcontrib>Ranken, Doug</creatorcontrib><creatorcontrib>Herman, Mark</creatorcontrib><creatorcontrib>Hudson, David</creatorcontrib><creatorcontrib>Huang, Mingxiong</creatorcontrib><creatorcontrib>Poole, Janet</creatorcontrib><title>Investigation of the normal proximal somatomotor system using magnetoencephalography</title><title>Clinical neurophysiology</title><addtitle>Clin Neurophysiol</addtitle><description>Objective: The role of the ipsilateral cortex in proximal muscle control in normal human subjects is still under debate. One clinical finding, rapid recovery of proximal muscle relative to distal muscle use following stroke, has led to the suggestion that the ipsilateral as well as the contralateral motor cortex may be involved in normal proximal muscle control. The primary goal of this project was to identify contralateral and ipsilateral motor cortex activation associated with proximal muscle movement in normal subjects using magnetoencephalography (MEG).
Methods: We developed protocols for a self-paced bicep motor task and a deltoid, electrical-stimulation somatosensory task. The MEG data were analyzed using automated multi-dipole spatiotemporal modeling techniques to localize the sources and characterize the associated timing of these sources.
Results: Reliable contralateral primary motor and somatosensory sources localized to areas consistent with the homunculus. Ipsilateral M1 activation was only found in 2/12 hemispheres.
Conclusions: Robust contralateral motor cortex activation and sparse ipsilateral motor cortex activation suggest that the ipsilateral motor cortex is not involved in normal proximal muscle control.
Significance: The results suggest that proximal and distal muscle control is similar in normal subjects in the sense that proximal muscle control is primarily governed by the contralateral motor cortex.</description><subject>Adult</subject><subject>Bicep</subject><subject>Biological and medical sciences</subject><subject>Brain Mapping</subject><subject>Deltoid</subject><subject>Electric Stimulation</subject><subject>Electromagnetic Fields</subject><subject>Female</subject><subject>Functional Laterality - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Ipsilateral motor cortex</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetoencephalography</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Monte Carlo Method</subject><subject>Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration</subject><subject>Motor Cortex - physiology</subject><subject>Motor Skills</subject><subject>Muscles - physiology</subject><subject>Proximal arm</subject><subject>Somatosensory</subject><subject>Somatosensory Cortex - physiology</subject><subject>Time Factors</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>1388-2457</issn><issn>1872-8952</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQhi1ERcvCTwDlAoJDij_ij5wQqoBWqtQD5WzNOuNdoyRebG_F_nuc7qIeOfk9PDOe9yHkDaOXjDL16QcTxrS8k_oDFR8pZZK29Bm5YEbz1vSSP6_5H3JOXub8i1KqacdfkHPWdX2vRX9B7m_mB8wlbKCEODfRN2WLzRzTBGOzS_FPWEKOE5Q4xRJTkw-54NTsc5g3zQSbGUvE2eFuC2PcJNhtD6_ImYcx4-vTuyI_v329v7pub---31x9uW1dZ1RpmUbFmBOeeQXeo_NcKOiNoUYJIWEtJHIxgB5wrQbhGDecrjWAkXWAc7Ei749766G_97WGnUJ2OI4wY9xnq4WqhTtdQXkEXYo5J_R2l2qxdLCM2kWnfdRpF1eWCvuos4YVeXv6YL-ecHiaOvmrwLsTANnB6BPMLuQnTrKOSrVwn48cVh0PAZPNLizWhpDQFTvE8J9T_gLcrJOi</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Stephen, Julia M</creator><creator>Davis, Larry E</creator><creator>Aine, Cheryl J</creator><creator>Ranken, Doug</creator><creator>Herman, Mark</creator><creator>Hudson, David</creator><creator>Huang, Mingxiong</creator><creator>Poole, Janet</creator><general>Elsevier Ireland Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20031001</creationdate><title>Investigation of the normal proximal somatomotor system using magnetoencephalography</title><author>Stephen, Julia M ; Davis, Larry E ; Aine, Cheryl J ; Ranken, Doug ; Herman, Mark ; Hudson, David ; Huang, Mingxiong ; Poole, Janet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-17e611c3f1f6affecf236a988086335ab35e23da7deb6d3c12820b7aa85f6a223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adult</topic><topic>Bicep</topic><topic>Biological and medical sciences</topic><topic>Brain Mapping</topic><topic>Deltoid</topic><topic>Electric Stimulation</topic><topic>Electromagnetic Fields</topic><topic>Female</topic><topic>Functional Laterality - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Ipsilateral motor cortex</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetoencephalography</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Monte Carlo Method</topic><topic>Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration</topic><topic>Motor Cortex - physiology</topic><topic>Motor Skills</topic><topic>Muscles - physiology</topic><topic>Proximal arm</topic><topic>Somatosensory</topic><topic>Somatosensory Cortex - physiology</topic><topic>Time Factors</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stephen, Julia M</creatorcontrib><creatorcontrib>Davis, Larry E</creatorcontrib><creatorcontrib>Aine, Cheryl J</creatorcontrib><creatorcontrib>Ranken, Doug</creatorcontrib><creatorcontrib>Herman, Mark</creatorcontrib><creatorcontrib>Hudson, David</creatorcontrib><creatorcontrib>Huang, Mingxiong</creatorcontrib><creatorcontrib>Poole, Janet</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stephen, Julia M</au><au>Davis, Larry E</au><au>Aine, Cheryl J</au><au>Ranken, Doug</au><au>Herman, Mark</au><au>Hudson, David</au><au>Huang, Mingxiong</au><au>Poole, Janet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the normal proximal somatomotor system using magnetoencephalography</atitle><jtitle>Clinical neurophysiology</jtitle><addtitle>Clin Neurophysiol</addtitle><date>2003-10-01</date><risdate>2003</risdate><volume>114</volume><issue>10</issue><spage>1781</spage><epage>1792</epage><pages>1781-1792</pages><issn>1388-2457</issn><eissn>1872-8952</eissn><abstract>Objective: The role of the ipsilateral cortex in proximal muscle control in normal human subjects is still under debate. One clinical finding, rapid recovery of proximal muscle relative to distal muscle use following stroke, has led to the suggestion that the ipsilateral as well as the contralateral motor cortex may be involved in normal proximal muscle control. The primary goal of this project was to identify contralateral and ipsilateral motor cortex activation associated with proximal muscle movement in normal subjects using magnetoencephalography (MEG).
Methods: We developed protocols for a self-paced bicep motor task and a deltoid, electrical-stimulation somatosensory task. The MEG data were analyzed using automated multi-dipole spatiotemporal modeling techniques to localize the sources and characterize the associated timing of these sources.
Results: Reliable contralateral primary motor and somatosensory sources localized to areas consistent with the homunculus. Ipsilateral M1 activation was only found in 2/12 hemispheres.
Conclusions: Robust contralateral motor cortex activation and sparse ipsilateral motor cortex activation suggest that the ipsilateral motor cortex is not involved in normal proximal muscle control.
Significance: The results suggest that proximal and distal muscle control is similar in normal subjects in the sense that proximal muscle control is primarily governed by the contralateral motor cortex.</abstract><cop>Shannon</cop><pub>Elsevier Ireland Ltd</pub><pmid>14499739</pmid><doi>10.1016/S1388-2457(03)00150-0</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-2457 |
ispartof | Clinical neurophysiology, 2003-10, Vol.114 (10), p.1781-1792 |
issn | 1388-2457 1872-8952 |
language | eng |
recordid | cdi_proquest_miscellaneous_73670447 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adult Bicep Biological and medical sciences Brain Mapping Deltoid Electric Stimulation Electromagnetic Fields Female Functional Laterality - physiology Fundamental and applied biological sciences. Psychology Humans Ipsilateral motor cortex Magnetic Resonance Imaging Magnetoencephalography Male Middle Aged Monte Carlo Method Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration Motor Cortex - physiology Motor Skills Muscles - physiology Proximal arm Somatosensory Somatosensory Cortex - physiology Time Factors Vertebrates: nervous system and sense organs |
title | Investigation of the normal proximal somatomotor system using magnetoencephalography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20normal%20proximal%20somatomotor%20system%20using%20magnetoencephalography&rft.jtitle=Clinical%20neurophysiology&rft.au=Stephen,%20Julia%20M&rft.date=2003-10-01&rft.volume=114&rft.issue=10&rft.spage=1781&rft.epage=1792&rft.pages=1781-1792&rft.issn=1388-2457&rft.eissn=1872-8952&rft_id=info:doi/10.1016/S1388-2457(03)00150-0&rft_dat=%3Cproquest_cross%3E73670447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73670447&rft_id=info:pmid/14499739&rft_els_id=S1388245703001500&rfr_iscdi=true |