Investigation of the normal proximal somatomotor system using magnetoencephalography

Objective: The role of the ipsilateral cortex in proximal muscle control in normal human subjects is still under debate. One clinical finding, rapid recovery of proximal muscle relative to distal muscle use following stroke, has led to the suggestion that the ipsilateral as well as the contralateral...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical neurophysiology 2003-10, Vol.114 (10), p.1781-1792
Hauptverfasser: Stephen, Julia M, Davis, Larry E, Aine, Cheryl J, Ranken, Doug, Herman, Mark, Hudson, David, Huang, Mingxiong, Poole, Janet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1792
container_issue 10
container_start_page 1781
container_title Clinical neurophysiology
container_volume 114
creator Stephen, Julia M
Davis, Larry E
Aine, Cheryl J
Ranken, Doug
Herman, Mark
Hudson, David
Huang, Mingxiong
Poole, Janet
description Objective: The role of the ipsilateral cortex in proximal muscle control in normal human subjects is still under debate. One clinical finding, rapid recovery of proximal muscle relative to distal muscle use following stroke, has led to the suggestion that the ipsilateral as well as the contralateral motor cortex may be involved in normal proximal muscle control. The primary goal of this project was to identify contralateral and ipsilateral motor cortex activation associated with proximal muscle movement in normal subjects using magnetoencephalography (MEG). Methods: We developed protocols for a self-paced bicep motor task and a deltoid, electrical-stimulation somatosensory task. The MEG data were analyzed using automated multi-dipole spatiotemporal modeling techniques to localize the sources and characterize the associated timing of these sources. Results: Reliable contralateral primary motor and somatosensory sources localized to areas consistent with the homunculus. Ipsilateral M1 activation was only found in 2/12 hemispheres. Conclusions: Robust contralateral motor cortex activation and sparse ipsilateral motor cortex activation suggest that the ipsilateral motor cortex is not involved in normal proximal muscle control. Significance: The results suggest that proximal and distal muscle control is similar in normal subjects in the sense that proximal muscle control is primarily governed by the contralateral motor cortex.
doi_str_mv 10.1016/S1388-2457(03)00150-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73670447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1388245703001500</els_id><sourcerecordid>73670447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-17e611c3f1f6affecf236a988086335ab35e23da7deb6d3c12820b7aa85f6a223</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi1ERcvCTwDlAoJDij_ij5wQqoBWqtQD5WzNOuNdoyRebG_F_nuc7qIeOfk9PDOe9yHkDaOXjDL16QcTxrS8k_oDFR8pZZK29Bm5YEbz1vSSP6_5H3JOXub8i1KqacdfkHPWdX2vRX9B7m_mB8wlbKCEODfRN2WLzRzTBGOzS_FPWEKOE5Q4xRJTkw-54NTsc5g3zQSbGUvE2eFuC2PcJNhtD6_ImYcx4-vTuyI_v329v7pub---31x9uW1dZ1RpmUbFmBOeeQXeo_NcKOiNoUYJIWEtJHIxgB5wrQbhGDecrjWAkXWAc7Ei749766G_97WGnUJ2OI4wY9xnq4WqhTtdQXkEXYo5J_R2l2qxdLCM2kWnfdRpF1eWCvuos4YVeXv6YL-ecHiaOvmrwLsTANnB6BPMLuQnTrKOSrVwn48cVh0PAZPNLizWhpDQFTvE8J9T_gLcrJOi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73670447</pqid></control><display><type>article</type><title>Investigation of the normal proximal somatomotor system using magnetoencephalography</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Stephen, Julia M ; Davis, Larry E ; Aine, Cheryl J ; Ranken, Doug ; Herman, Mark ; Hudson, David ; Huang, Mingxiong ; Poole, Janet</creator><creatorcontrib>Stephen, Julia M ; Davis, Larry E ; Aine, Cheryl J ; Ranken, Doug ; Herman, Mark ; Hudson, David ; Huang, Mingxiong ; Poole, Janet</creatorcontrib><description>Objective: The role of the ipsilateral cortex in proximal muscle control in normal human subjects is still under debate. One clinical finding, rapid recovery of proximal muscle relative to distal muscle use following stroke, has led to the suggestion that the ipsilateral as well as the contralateral motor cortex may be involved in normal proximal muscle control. The primary goal of this project was to identify contralateral and ipsilateral motor cortex activation associated with proximal muscle movement in normal subjects using magnetoencephalography (MEG). Methods: We developed protocols for a self-paced bicep motor task and a deltoid, electrical-stimulation somatosensory task. The MEG data were analyzed using automated multi-dipole spatiotemporal modeling techniques to localize the sources and characterize the associated timing of these sources. Results: Reliable contralateral primary motor and somatosensory sources localized to areas consistent with the homunculus. Ipsilateral M1 activation was only found in 2/12 hemispheres. Conclusions: Robust contralateral motor cortex activation and sparse ipsilateral motor cortex activation suggest that the ipsilateral motor cortex is not involved in normal proximal muscle control. Significance: The results suggest that proximal and distal muscle control is similar in normal subjects in the sense that proximal muscle control is primarily governed by the contralateral motor cortex.</description><identifier>ISSN: 1388-2457</identifier><identifier>EISSN: 1872-8952</identifier><identifier>DOI: 10.1016/S1388-2457(03)00150-0</identifier><identifier>PMID: 14499739</identifier><language>eng</language><publisher>Shannon: Elsevier Ireland Ltd</publisher><subject>Adult ; Bicep ; Biological and medical sciences ; Brain Mapping ; Deltoid ; Electric Stimulation ; Electromagnetic Fields ; Female ; Functional Laterality - physiology ; Fundamental and applied biological sciences. Psychology ; Humans ; Ipsilateral motor cortex ; Magnetic Resonance Imaging ; Magnetoencephalography ; Male ; Middle Aged ; Monte Carlo Method ; Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration ; Motor Cortex - physiology ; Motor Skills ; Muscles - physiology ; Proximal arm ; Somatosensory ; Somatosensory Cortex - physiology ; Time Factors ; Vertebrates: nervous system and sense organs</subject><ispartof>Clinical neurophysiology, 2003-10, Vol.114 (10), p.1781-1792</ispartof><rights>2003 International Federation of Clinical Neurophysiology</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-17e611c3f1f6affecf236a988086335ab35e23da7deb6d3c12820b7aa85f6a223</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1388245703001500$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15140569$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14499739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stephen, Julia M</creatorcontrib><creatorcontrib>Davis, Larry E</creatorcontrib><creatorcontrib>Aine, Cheryl J</creatorcontrib><creatorcontrib>Ranken, Doug</creatorcontrib><creatorcontrib>Herman, Mark</creatorcontrib><creatorcontrib>Hudson, David</creatorcontrib><creatorcontrib>Huang, Mingxiong</creatorcontrib><creatorcontrib>Poole, Janet</creatorcontrib><title>Investigation of the normal proximal somatomotor system using magnetoencephalography</title><title>Clinical neurophysiology</title><addtitle>Clin Neurophysiol</addtitle><description>Objective: The role of the ipsilateral cortex in proximal muscle control in normal human subjects is still under debate. One clinical finding, rapid recovery of proximal muscle relative to distal muscle use following stroke, has led to the suggestion that the ipsilateral as well as the contralateral motor cortex may be involved in normal proximal muscle control. The primary goal of this project was to identify contralateral and ipsilateral motor cortex activation associated with proximal muscle movement in normal subjects using magnetoencephalography (MEG). Methods: We developed protocols for a self-paced bicep motor task and a deltoid, electrical-stimulation somatosensory task. The MEG data were analyzed using automated multi-dipole spatiotemporal modeling techniques to localize the sources and characterize the associated timing of these sources. Results: Reliable contralateral primary motor and somatosensory sources localized to areas consistent with the homunculus. Ipsilateral M1 activation was only found in 2/12 hemispheres. Conclusions: Robust contralateral motor cortex activation and sparse ipsilateral motor cortex activation suggest that the ipsilateral motor cortex is not involved in normal proximal muscle control. Significance: The results suggest that proximal and distal muscle control is similar in normal subjects in the sense that proximal muscle control is primarily governed by the contralateral motor cortex.</description><subject>Adult</subject><subject>Bicep</subject><subject>Biological and medical sciences</subject><subject>Brain Mapping</subject><subject>Deltoid</subject><subject>Electric Stimulation</subject><subject>Electromagnetic Fields</subject><subject>Female</subject><subject>Functional Laterality - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Ipsilateral motor cortex</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetoencephalography</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Monte Carlo Method</subject><subject>Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration</subject><subject>Motor Cortex - physiology</subject><subject>Motor Skills</subject><subject>Muscles - physiology</subject><subject>Proximal arm</subject><subject>Somatosensory</subject><subject>Somatosensory Cortex - physiology</subject><subject>Time Factors</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>1388-2457</issn><issn>1872-8952</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQhi1ERcvCTwDlAoJDij_ij5wQqoBWqtQD5WzNOuNdoyRebG_F_nuc7qIeOfk9PDOe9yHkDaOXjDL16QcTxrS8k_oDFR8pZZK29Bm5YEbz1vSSP6_5H3JOXub8i1KqacdfkHPWdX2vRX9B7m_mB8wlbKCEODfRN2WLzRzTBGOzS_FPWEKOE5Q4xRJTkw-54NTsc5g3zQSbGUvE2eFuC2PcJNhtD6_ImYcx4-vTuyI_v329v7pub---31x9uW1dZ1RpmUbFmBOeeQXeo_NcKOiNoUYJIWEtJHIxgB5wrQbhGDecrjWAkXWAc7Ei749766G_97WGnUJ2OI4wY9xnq4WqhTtdQXkEXYo5J_R2l2qxdLCM2kWnfdRpF1eWCvuos4YVeXv6YL-ecHiaOvmrwLsTANnB6BPMLuQnTrKOSrVwn48cVh0PAZPNLizWhpDQFTvE8J9T_gLcrJOi</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Stephen, Julia M</creator><creator>Davis, Larry E</creator><creator>Aine, Cheryl J</creator><creator>Ranken, Doug</creator><creator>Herman, Mark</creator><creator>Hudson, David</creator><creator>Huang, Mingxiong</creator><creator>Poole, Janet</creator><general>Elsevier Ireland Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20031001</creationdate><title>Investigation of the normal proximal somatomotor system using magnetoencephalography</title><author>Stephen, Julia M ; Davis, Larry E ; Aine, Cheryl J ; Ranken, Doug ; Herman, Mark ; Hudson, David ; Huang, Mingxiong ; Poole, Janet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-17e611c3f1f6affecf236a988086335ab35e23da7deb6d3c12820b7aa85f6a223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adult</topic><topic>Bicep</topic><topic>Biological and medical sciences</topic><topic>Brain Mapping</topic><topic>Deltoid</topic><topic>Electric Stimulation</topic><topic>Electromagnetic Fields</topic><topic>Female</topic><topic>Functional Laterality - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Ipsilateral motor cortex</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetoencephalography</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Monte Carlo Method</topic><topic>Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration</topic><topic>Motor Cortex - physiology</topic><topic>Motor Skills</topic><topic>Muscles - physiology</topic><topic>Proximal arm</topic><topic>Somatosensory</topic><topic>Somatosensory Cortex - physiology</topic><topic>Time Factors</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stephen, Julia M</creatorcontrib><creatorcontrib>Davis, Larry E</creatorcontrib><creatorcontrib>Aine, Cheryl J</creatorcontrib><creatorcontrib>Ranken, Doug</creatorcontrib><creatorcontrib>Herman, Mark</creatorcontrib><creatorcontrib>Hudson, David</creatorcontrib><creatorcontrib>Huang, Mingxiong</creatorcontrib><creatorcontrib>Poole, Janet</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stephen, Julia M</au><au>Davis, Larry E</au><au>Aine, Cheryl J</au><au>Ranken, Doug</au><au>Herman, Mark</au><au>Hudson, David</au><au>Huang, Mingxiong</au><au>Poole, Janet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the normal proximal somatomotor system using magnetoencephalography</atitle><jtitle>Clinical neurophysiology</jtitle><addtitle>Clin Neurophysiol</addtitle><date>2003-10-01</date><risdate>2003</risdate><volume>114</volume><issue>10</issue><spage>1781</spage><epage>1792</epage><pages>1781-1792</pages><issn>1388-2457</issn><eissn>1872-8952</eissn><abstract>Objective: The role of the ipsilateral cortex in proximal muscle control in normal human subjects is still under debate. One clinical finding, rapid recovery of proximal muscle relative to distal muscle use following stroke, has led to the suggestion that the ipsilateral as well as the contralateral motor cortex may be involved in normal proximal muscle control. The primary goal of this project was to identify contralateral and ipsilateral motor cortex activation associated with proximal muscle movement in normal subjects using magnetoencephalography (MEG). Methods: We developed protocols for a self-paced bicep motor task and a deltoid, electrical-stimulation somatosensory task. The MEG data were analyzed using automated multi-dipole spatiotemporal modeling techniques to localize the sources and characterize the associated timing of these sources. Results: Reliable contralateral primary motor and somatosensory sources localized to areas consistent with the homunculus. Ipsilateral M1 activation was only found in 2/12 hemispheres. Conclusions: Robust contralateral motor cortex activation and sparse ipsilateral motor cortex activation suggest that the ipsilateral motor cortex is not involved in normal proximal muscle control. Significance: The results suggest that proximal and distal muscle control is similar in normal subjects in the sense that proximal muscle control is primarily governed by the contralateral motor cortex.</abstract><cop>Shannon</cop><pub>Elsevier Ireland Ltd</pub><pmid>14499739</pmid><doi>10.1016/S1388-2457(03)00150-0</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-2457
ispartof Clinical neurophysiology, 2003-10, Vol.114 (10), p.1781-1792
issn 1388-2457
1872-8952
language eng
recordid cdi_proquest_miscellaneous_73670447
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Bicep
Biological and medical sciences
Brain Mapping
Deltoid
Electric Stimulation
Electromagnetic Fields
Female
Functional Laterality - physiology
Fundamental and applied biological sciences. Psychology
Humans
Ipsilateral motor cortex
Magnetic Resonance Imaging
Magnetoencephalography
Male
Middle Aged
Monte Carlo Method
Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration
Motor Cortex - physiology
Motor Skills
Muscles - physiology
Proximal arm
Somatosensory
Somatosensory Cortex - physiology
Time Factors
Vertebrates: nervous system and sense organs
title Investigation of the normal proximal somatomotor system using magnetoencephalography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20normal%20proximal%20somatomotor%20system%20using%20magnetoencephalography&rft.jtitle=Clinical%20neurophysiology&rft.au=Stephen,%20Julia%20M&rft.date=2003-10-01&rft.volume=114&rft.issue=10&rft.spage=1781&rft.epage=1792&rft.pages=1781-1792&rft.issn=1388-2457&rft.eissn=1872-8952&rft_id=info:doi/10.1016/S1388-2457(03)00150-0&rft_dat=%3Cproquest_cross%3E73670447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73670447&rft_id=info:pmid/14499739&rft_els_id=S1388245703001500&rfr_iscdi=true