Extracting invariable fault features of rotating machines with multi-ICA networks

This paper proposes novel multi-layer neural networks based on Independent Component Analysis for feature extraction of fault modes. By the use of ICA, invariable features embedded in multi-channel vibration measurements under different operating conditions (rotating speed and/or load) can be captur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Zhejiang University. Science 2003-09, Vol.4 (5), p.595-601
1. Verfasser: 焦卫东 杨世锡 吴昭同
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 601
container_issue 5
container_start_page 595
container_title Journal of Zhejiang University. Science
container_volume 4
creator 焦卫东 杨世锡 吴昭同
description This paper proposes novel multi-layer neural networks based on Independent Component Analysis for feature extraction of fault modes. By the use of ICA, invariable features embedded in multi-channel vibration measurements under different operating conditions (rotating speed and/or load) can be captured together.Thus, stable MLP classifiers insensitive to the variation of operation conditions are constructed. The successful results achieved by selected experiments indicate great potential of ICA in health condition monitoring of rotating machines.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_73655341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>8452773</cqvip_id><sourcerecordid>28074714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-b9c4946fe2398b84c584b87f0005dcfb9fb93daea04ff5f17a88fda41d9fd0cf3</originalsourceid><addsrcrecordid>eNqF0EtLAzEUBeAsFFurf0Hixt1AMkmaZCmlPqAggq6Hm0zSxs6jTTJW_72DrWvhwIXDx12cMzSlhOiCES0m6DKlD0KYlIpeoAkttVCypFP0uvzKEWwO3RqH7hNiANM47GFoMvYO8hBdwr3Hsc_wq1qwm9CN5SHkDW5HF4rnxT3uXD70cZuu0LmHJrnr052h94fl2-KpWL08jm5VWCp1Loy2XPO5dyXTyihuheJGSU8IEbX1Ro9hNTgg3HvhqQSlfA2c1trXxHo2Q3fHv7vY7weXctWGZF3TQOf6IVWSzYVgnP4LS0Ukl5SP8OYEB9O6utrF0EL8rv7WGsHtEdhN36334xqVAbv1oXGV4qKUkrEf28xx4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28074714</pqid></control><display><type>article</type><title>Extracting invariable fault features of rotating machines with multi-ICA networks</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>焦卫东 杨世锡 吴昭同</creator><creatorcontrib>焦卫东 杨世锡 吴昭同</creatorcontrib><description>This paper proposes novel multi-layer neural networks based on Independent Component Analysis for feature extraction of fault modes. By the use of ICA, invariable features embedded in multi-channel vibration measurements under different operating conditions (rotating speed and/or load) can be captured together.Thus, stable MLP classifiers insensitive to the variation of operation conditions are constructed. The successful results achieved by selected experiments indicate great potential of ICA in health condition monitoring of rotating machines.</description><identifier>ISSN: 1009-3095</identifier><identifier>PMID: 12958721</identifier><language>eng</language><publisher>China</publisher><subject>Algorithms ; Computer Simulation ; Neural Networks (Computer) ; Principal Component Analysis ; Time Factors ; 多层神经网络 ; 振动测量 ; 故障诊断 ; 旋转电机 ; 特征提取 ; 独立组分分析</subject><ispartof>Journal of Zhejiang University. Science, 2003-09, Vol.4 (5), p.595-601</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86281X/86281X.jpg</thumbnail><link.rule.ids>314,776,780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12958721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>焦卫东 杨世锡 吴昭同</creatorcontrib><title>Extracting invariable fault features of rotating machines with multi-ICA networks</title><title>Journal of Zhejiang University. Science</title><addtitle>Journal of Zhejiang University Science</addtitle><description>This paper proposes novel multi-layer neural networks based on Independent Component Analysis for feature extraction of fault modes. By the use of ICA, invariable features embedded in multi-channel vibration measurements under different operating conditions (rotating speed and/or load) can be captured together.Thus, stable MLP classifiers insensitive to the variation of operation conditions are constructed. The successful results achieved by selected experiments indicate great potential of ICA in health condition monitoring of rotating machines.</description><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Neural Networks (Computer)</subject><subject>Principal Component Analysis</subject><subject>Time Factors</subject><subject>多层神经网络</subject><subject>振动测量</subject><subject>故障诊断</subject><subject>旋转电机</subject><subject>特征提取</subject><subject>独立组分分析</subject><issn>1009-3095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0EtLAzEUBeAsFFurf0Hixt1AMkmaZCmlPqAggq6Hm0zSxs6jTTJW_72DrWvhwIXDx12cMzSlhOiCES0m6DKlD0KYlIpeoAkttVCypFP0uvzKEWwO3RqH7hNiANM47GFoMvYO8hBdwr3Hsc_wq1qwm9CN5SHkDW5HF4rnxT3uXD70cZuu0LmHJrnr052h94fl2-KpWL08jm5VWCp1Loy2XPO5dyXTyihuheJGSU8IEbX1Ro9hNTgg3HvhqQSlfA2c1trXxHo2Q3fHv7vY7weXctWGZF3TQOf6IVWSzYVgnP4LS0Ukl5SP8OYEB9O6utrF0EL8rv7WGsHtEdhN36334xqVAbv1oXGV4qKUkrEf28xx4A</recordid><startdate>200309</startdate><enddate>200309</enddate><creator>焦卫东 杨世锡 吴昭同</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>200309</creationdate><title>Extracting invariable fault features of rotating machines with multi-ICA networks</title><author>焦卫东 杨世锡 吴昭同</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-b9c4946fe2398b84c584b87f0005dcfb9fb93daea04ff5f17a88fda41d9fd0cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Neural Networks (Computer)</topic><topic>Principal Component Analysis</topic><topic>Time Factors</topic><topic>多层神经网络</topic><topic>振动测量</topic><topic>故障诊断</topic><topic>旋转电机</topic><topic>特征提取</topic><topic>独立组分分析</topic><toplevel>online_resources</toplevel><creatorcontrib>焦卫东 杨世锡 吴昭同</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Zhejiang University. Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>焦卫东 杨世锡 吴昭同</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting invariable fault features of rotating machines with multi-ICA networks</atitle><jtitle>Journal of Zhejiang University. Science</jtitle><addtitle>Journal of Zhejiang University Science</addtitle><date>2003-09</date><risdate>2003</risdate><volume>4</volume><issue>5</issue><spage>595</spage><epage>601</epage><pages>595-601</pages><issn>1009-3095</issn><abstract>This paper proposes novel multi-layer neural networks based on Independent Component Analysis for feature extraction of fault modes. By the use of ICA, invariable features embedded in multi-channel vibration measurements under different operating conditions (rotating speed and/or load) can be captured together.Thus, stable MLP classifiers insensitive to the variation of operation conditions are constructed. The successful results achieved by selected experiments indicate great potential of ICA in health condition monitoring of rotating machines.</abstract><cop>China</cop><pmid>12958721</pmid><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1009-3095
ispartof Journal of Zhejiang University. Science, 2003-09, Vol.4 (5), p.595-601
issn 1009-3095
language eng
recordid cdi_proquest_miscellaneous_73655341
source MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Computer Simulation
Neural Networks (Computer)
Principal Component Analysis
Time Factors
多层神经网络
振动测量
故障诊断
旋转电机
特征提取
独立组分分析
title Extracting invariable fault features of rotating machines with multi-ICA networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20invariable%20fault%20features%20of%20rotating%20machines%20with%20multi-ICA%20networks&rft.jtitle=Journal%20of%20Zhejiang%20University.%20Science&rft.au=%E7%84%A6%E5%8D%AB%E4%B8%9C%20%E6%9D%A8%E4%B8%96%E9%94%A1%20%E5%90%B4%E6%98%AD%E5%90%8C&rft.date=2003-09&rft.volume=4&rft.issue=5&rft.spage=595&rft.epage=601&rft.pages=595-601&rft.issn=1009-3095&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E28074714%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28074714&rft_id=info:pmid/12958721&rft_cqvip_id=8452773&rfr_iscdi=true