Extracting invariable fault features of rotating machines with multi-ICA networks
This paper proposes novel multi-layer neural networks based on Independent Component Analysis for feature extraction of fault modes. By the use of ICA, invariable features embedded in multi-channel vibration measurements under different operating conditions (rotating speed and/or load) can be captur...
Gespeichert in:
Veröffentlicht in: | Journal of Zhejiang University. Science 2003-09, Vol.4 (5), p.595-601 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 601 |
---|---|
container_issue | 5 |
container_start_page | 595 |
container_title | Journal of Zhejiang University. Science |
container_volume | 4 |
creator | 焦卫东 杨世锡 吴昭同 |
description | This paper proposes novel multi-layer neural networks based on Independent Component Analysis for feature extraction of fault modes. By the use of ICA, invariable features embedded in multi-channel vibration measurements under different operating conditions (rotating speed and/or load) can be captured together.Thus, stable MLP classifiers insensitive to the variation of operation conditions are constructed. The successful results achieved by selected experiments indicate great potential of ICA in health condition monitoring of rotating machines. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_73655341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>8452773</cqvip_id><sourcerecordid>28074714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-b9c4946fe2398b84c584b87f0005dcfb9fb93daea04ff5f17a88fda41d9fd0cf3</originalsourceid><addsrcrecordid>eNqF0EtLAzEUBeAsFFurf0Hixt1AMkmaZCmlPqAggq6Hm0zSxs6jTTJW_72DrWvhwIXDx12cMzSlhOiCES0m6DKlD0KYlIpeoAkttVCypFP0uvzKEWwO3RqH7hNiANM47GFoMvYO8hBdwr3Hsc_wq1qwm9CN5SHkDW5HF4rnxT3uXD70cZuu0LmHJrnr052h94fl2-KpWL08jm5VWCp1Loy2XPO5dyXTyihuheJGSU8IEbX1Ro9hNTgg3HvhqQSlfA2c1trXxHo2Q3fHv7vY7weXctWGZF3TQOf6IVWSzYVgnP4LS0Ukl5SP8OYEB9O6utrF0EL8rv7WGsHtEdhN36334xqVAbv1oXGV4qKUkrEf28xx4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28074714</pqid></control><display><type>article</type><title>Extracting invariable fault features of rotating machines with multi-ICA networks</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>焦卫东 杨世锡 吴昭同</creator><creatorcontrib>焦卫东 杨世锡 吴昭同</creatorcontrib><description>This paper proposes novel multi-layer neural networks based on Independent Component Analysis for feature extraction of fault modes. By the use of ICA, invariable features embedded in multi-channel vibration measurements under different operating conditions (rotating speed and/or load) can be captured together.Thus, stable MLP classifiers insensitive to the variation of operation conditions are constructed. The successful results achieved by selected experiments indicate great potential of ICA in health condition monitoring of rotating machines.</description><identifier>ISSN: 1009-3095</identifier><identifier>PMID: 12958721</identifier><language>eng</language><publisher>China</publisher><subject>Algorithms ; Computer Simulation ; Neural Networks (Computer) ; Principal Component Analysis ; Time Factors ; 多层神经网络 ; 振动测量 ; 故障诊断 ; 旋转电机 ; 特征提取 ; 独立组分分析</subject><ispartof>Journal of Zhejiang University. Science, 2003-09, Vol.4 (5), p.595-601</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86281X/86281X.jpg</thumbnail><link.rule.ids>314,776,780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12958721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>焦卫东 杨世锡 吴昭同</creatorcontrib><title>Extracting invariable fault features of rotating machines with multi-ICA networks</title><title>Journal of Zhejiang University. Science</title><addtitle>Journal of Zhejiang University Science</addtitle><description>This paper proposes novel multi-layer neural networks based on Independent Component Analysis for feature extraction of fault modes. By the use of ICA, invariable features embedded in multi-channel vibration measurements under different operating conditions (rotating speed and/or load) can be captured together.Thus, stable MLP classifiers insensitive to the variation of operation conditions are constructed. The successful results achieved by selected experiments indicate great potential of ICA in health condition monitoring of rotating machines.</description><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Neural Networks (Computer)</subject><subject>Principal Component Analysis</subject><subject>Time Factors</subject><subject>多层神经网络</subject><subject>振动测量</subject><subject>故障诊断</subject><subject>旋转电机</subject><subject>特征提取</subject><subject>独立组分分析</subject><issn>1009-3095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0EtLAzEUBeAsFFurf0Hixt1AMkmaZCmlPqAggq6Hm0zSxs6jTTJW_72DrWvhwIXDx12cMzSlhOiCES0m6DKlD0KYlIpeoAkttVCypFP0uvzKEWwO3RqH7hNiANM47GFoMvYO8hBdwr3Hsc_wq1qwm9CN5SHkDW5HF4rnxT3uXD70cZuu0LmHJrnr052h94fl2-KpWL08jm5VWCp1Loy2XPO5dyXTyihuheJGSU8IEbX1Ro9hNTgg3HvhqQSlfA2c1trXxHo2Q3fHv7vY7weXctWGZF3TQOf6IVWSzYVgnP4LS0Ukl5SP8OYEB9O6utrF0EL8rv7WGsHtEdhN36334xqVAbv1oXGV4qKUkrEf28xx4A</recordid><startdate>200309</startdate><enddate>200309</enddate><creator>焦卫东 杨世锡 吴昭同</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>200309</creationdate><title>Extracting invariable fault features of rotating machines with multi-ICA networks</title><author>焦卫东 杨世锡 吴昭同</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-b9c4946fe2398b84c584b87f0005dcfb9fb93daea04ff5f17a88fda41d9fd0cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Neural Networks (Computer)</topic><topic>Principal Component Analysis</topic><topic>Time Factors</topic><topic>多层神经网络</topic><topic>振动测量</topic><topic>故障诊断</topic><topic>旋转电机</topic><topic>特征提取</topic><topic>独立组分分析</topic><toplevel>online_resources</toplevel><creatorcontrib>焦卫东 杨世锡 吴昭同</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Zhejiang University. Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>焦卫东 杨世锡 吴昭同</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting invariable fault features of rotating machines with multi-ICA networks</atitle><jtitle>Journal of Zhejiang University. Science</jtitle><addtitle>Journal of Zhejiang University Science</addtitle><date>2003-09</date><risdate>2003</risdate><volume>4</volume><issue>5</issue><spage>595</spage><epage>601</epage><pages>595-601</pages><issn>1009-3095</issn><abstract>This paper proposes novel multi-layer neural networks based on Independent Component Analysis for feature extraction of fault modes. By the use of ICA, invariable features embedded in multi-channel vibration measurements under different operating conditions (rotating speed and/or load) can be captured together.Thus, stable MLP classifiers insensitive to the variation of operation conditions are constructed. The successful results achieved by selected experiments indicate great potential of ICA in health condition monitoring of rotating machines.</abstract><cop>China</cop><pmid>12958721</pmid><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1009-3095 |
ispartof | Journal of Zhejiang University. Science, 2003-09, Vol.4 (5), p.595-601 |
issn | 1009-3095 |
language | eng |
recordid | cdi_proquest_miscellaneous_73655341 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Computer Simulation Neural Networks (Computer) Principal Component Analysis Time Factors 多层神经网络 振动测量 故障诊断 旋转电机 特征提取 独立组分分析 |
title | Extracting invariable fault features of rotating machines with multi-ICA networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20invariable%20fault%20features%20of%20rotating%20machines%20with%20multi-ICA%20networks&rft.jtitle=Journal%20of%20Zhejiang%20University.%20Science&rft.au=%E7%84%A6%E5%8D%AB%E4%B8%9C%20%E6%9D%A8%E4%B8%96%E9%94%A1%20%E5%90%B4%E6%98%AD%E5%90%8C&rft.date=2003-09&rft.volume=4&rft.issue=5&rft.spage=595&rft.epage=601&rft.pages=595-601&rft.issn=1009-3095&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E28074714%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28074714&rft_id=info:pmid/12958721&rft_cqvip_id=8452773&rfr_iscdi=true |