High-performance thin-film transistors using semiconductor nanowires and nanoribbons
Thin-film transistors (TFTs) are the fundamental building blocks for the rapidly growing field of macroelectronics 1 , 2 . The use of plastic substrates is also increasing in importance owing to their light weight, flexibility, shock resistance and low cost 3 , 4 . Current polycrystalline-Si TFT tec...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2003-09, Vol.425 (6955), p.274-278 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 278 |
---|---|
container_issue | 6955 |
container_start_page | 274 |
container_title | Nature (London) |
container_volume | 425 |
creator | Duan, Xiangfeng Niu, Chunming Sahi, Vijendra Chen, Jian Parce, J. Wallace Empedocles, Stephen Goldman, Jay L. |
description | Thin-film transistors (TFTs) are the fundamental building blocks for the rapidly growing field of macroelectronics
1
,
2
. The use of plastic substrates is also increasing in importance owing to their light weight, flexibility, shock resistance and low cost
3
,
4
. Current polycrystalline-Si TFT technology is difficult to implement on plastics because of the high process temperatures required
1
,
2
. Amorphous-Si and organic semiconductor
5
,
6
TFTs, which can be processed at lower temperatures, but are limited by poor carrier mobility. As a result, applications that require even modest computation, control or communication functions on plastics cannot be addressed by existing TFT technology. Alternative semiconductor materials
7
,
8
that could form TFTs with performance comparable to or better than polycrystalline or single-crystal Si, and which can be processed at low temperatures over large-area plastic substrates, should not only improve the existing technologies, but also enable new applications in flexible, wearable and disposable electronics. Here we report the fabrication of TFTs using oriented Si nanowire thin films or CdS nanoribbons as semiconducting channels. We show that high-performance TFTs can be produced on various substrates, including plastics, using a low-temperature assembly process. Our approach is general to a broad range of materials including high-mobility materials (such as InAs or InP). |
doi_str_mv | 10.1038/nature01996 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_73654757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A187749464</galeid><sourcerecordid>A187749464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c687t-fb431f0940fd0684d369bb3327b5810ec7dd09515e48fcf592ed5d0c18cbfe4f3</originalsourceid><addsrcrecordid>eNqF0tFr1DAcB_AgipvTJ9-lCBNEO5M2aZrH41A3GAp64mNIk1-6jDa5JS3qf2_mHdydnEgfSptPv2m-_BB6TvAFwXX7zqtpjoCJEM0DdEoob0ratPwhOsW4akvc1s0JepLSLcaYEU4foxNSN1wIQk7R6tL1N-Uaog1xVF5DMd04X1o3jMUUlU8uTSGmYk7O90WC0engzazzy8IrH364CKlQ3vx5iq7rgk9P0SOrhgTPtvcz9O3D-9Xysrz-_PFqubgudf6_qbQdrYnFgmJrcNNSUzei6-q64h1rCQbNjcGCEQa0tdoyUYFhBmvS6s4CtfUZerXJXcdwN0Oa5OiShmFQHsKcJK8bRjnj_4UVF5hyTjN8-Re8DXP0-RCywpTlLvl9WrlBvRpAOm9Dbkr34CGqIXjI5YFckDYHCtrshR54vXZ3ch9dHEH5MpvOj6S-Pvggmwl-Tr2aU5JXX78c2jf_tovV9-Wno1rHkFIEK9fRjSr-kgTL-5GTeyOX9YttZXM3gtnZ7YxlcL4FKmk12DxV2qWdY4RkVmX3duNSXvI9xF33x_b9DRvg680</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204508377</pqid></control><display><type>article</type><title>High-performance thin-film transistors using semiconductor nanowires and nanoribbons</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Duan, Xiangfeng ; Niu, Chunming ; Sahi, Vijendra ; Chen, Jian ; Parce, J. Wallace ; Empedocles, Stephen ; Goldman, Jay L.</creator><creatorcontrib>Duan, Xiangfeng ; Niu, Chunming ; Sahi, Vijendra ; Chen, Jian ; Parce, J. Wallace ; Empedocles, Stephen ; Goldman, Jay L.</creatorcontrib><description>Thin-film transistors (TFTs) are the fundamental building blocks for the rapidly growing field of macroelectronics
1
,
2
. The use of plastic substrates is also increasing in importance owing to their light weight, flexibility, shock resistance and low cost
3
,
4
. Current polycrystalline-Si TFT technology is difficult to implement on plastics because of the high process temperatures required
1
,
2
. Amorphous-Si and organic semiconductor
5
,
6
TFTs, which can be processed at lower temperatures, but are limited by poor carrier mobility. As a result, applications that require even modest computation, control or communication functions on plastics cannot be addressed by existing TFT technology. Alternative semiconductor materials
7
,
8
that could form TFTs with performance comparable to or better than polycrystalline or single-crystal Si, and which can be processed at low temperatures over large-area plastic substrates, should not only improve the existing technologies, but also enable new applications in flexible, wearable and disposable electronics. Here we report the fabrication of TFTs using oriented Si nanowire thin films or CdS nanoribbons as semiconducting channels. We show that high-performance TFTs can be produced on various substrates, including plastics, using a low-temperature assembly process. Our approach is general to a broad range of materials including high-mobility materials (such as InAs or InP).</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature01996</identifier><identifier>PMID: 13679911</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Applied sciences ; Electronics ; Exact sciences and technology ; Fabrication ; Humanities and Social Sciences ; letter ; Low temperature ; Microelectronic fabrication (materials and surfaces technology) ; multidisciplinary ; Nanotechnology ; Plastics ; Science ; Science (multidisciplinary) ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Thin films ; Transistors</subject><ispartof>Nature (London), 2003-09, Vol.425 (6955), p.274-278</ispartof><rights>Macmillan Magazines Ltd. 2003</rights><rights>2003 INIST-CNRS</rights><rights>COPYRIGHT 2003 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Sep 18, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c687t-fb431f0940fd0684d369bb3327b5810ec7dd09515e48fcf592ed5d0c18cbfe4f3</citedby><cites>FETCH-LOGICAL-c687t-fb431f0940fd0684d369bb3327b5810ec7dd09515e48fcf592ed5d0c18cbfe4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature01996$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature01996$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15119112$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/13679911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duan, Xiangfeng</creatorcontrib><creatorcontrib>Niu, Chunming</creatorcontrib><creatorcontrib>Sahi, Vijendra</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Parce, J. Wallace</creatorcontrib><creatorcontrib>Empedocles, Stephen</creatorcontrib><creatorcontrib>Goldman, Jay L.</creatorcontrib><title>High-performance thin-film transistors using semiconductor nanowires and nanoribbons</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Thin-film transistors (TFTs) are the fundamental building blocks for the rapidly growing field of macroelectronics
1
,
2
. The use of plastic substrates is also increasing in importance owing to their light weight, flexibility, shock resistance and low cost
3
,
4
. Current polycrystalline-Si TFT technology is difficult to implement on plastics because of the high process temperatures required
1
,
2
. Amorphous-Si and organic semiconductor
5
,
6
TFTs, which can be processed at lower temperatures, but are limited by poor carrier mobility. As a result, applications that require even modest computation, control or communication functions on plastics cannot be addressed by existing TFT technology. Alternative semiconductor materials
7
,
8
that could form TFTs with performance comparable to or better than polycrystalline or single-crystal Si, and which can be processed at low temperatures over large-area plastic substrates, should not only improve the existing technologies, but also enable new applications in flexible, wearable and disposable electronics. Here we report the fabrication of TFTs using oriented Si nanowire thin films or CdS nanoribbons as semiconducting channels. We show that high-performance TFTs can be produced on various substrates, including plastics, using a low-temperature assembly process. Our approach is general to a broad range of materials including high-mobility materials (such as InAs or InP).</description><subject>Applied sciences</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Low temperature</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>multidisciplinary</subject><subject>Nanotechnology</subject><subject>Plastics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Thin films</subject><subject>Transistors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0tFr1DAcB_AgipvTJ9-lCBNEO5M2aZrH41A3GAp64mNIk1-6jDa5JS3qf2_mHdydnEgfSptPv2m-_BB6TvAFwXX7zqtpjoCJEM0DdEoob0ratPwhOsW4akvc1s0JepLSLcaYEU4foxNSN1wIQk7R6tL1N-Uaog1xVF5DMd04X1o3jMUUlU8uTSGmYk7O90WC0engzazzy8IrH364CKlQ3vx5iq7rgk9P0SOrhgTPtvcz9O3D-9Xysrz-_PFqubgudf6_qbQdrYnFgmJrcNNSUzei6-q64h1rCQbNjcGCEQa0tdoyUYFhBmvS6s4CtfUZerXJXcdwN0Oa5OiShmFQHsKcJK8bRjnj_4UVF5hyTjN8-Re8DXP0-RCywpTlLvl9WrlBvRpAOm9Dbkr34CGqIXjI5YFckDYHCtrshR54vXZ3ch9dHEH5MpvOj6S-Pvggmwl-Tr2aU5JXX78c2jf_tovV9-Wno1rHkFIEK9fRjSr-kgTL-5GTeyOX9YttZXM3gtnZ7YxlcL4FKmk12DxV2qWdY4RkVmX3duNSXvI9xF33x_b9DRvg680</recordid><startdate>20030918</startdate><enddate>20030918</enddate><creator>Duan, Xiangfeng</creator><creator>Niu, Chunming</creator><creator>Sahi, Vijendra</creator><creator>Chen, Jian</creator><creator>Parce, J. Wallace</creator><creator>Empedocles, Stephen</creator><creator>Goldman, Jay L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SP</scope><scope>7U5</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20030918</creationdate><title>High-performance thin-film transistors using semiconductor nanowires and nanoribbons</title><author>Duan, Xiangfeng ; Niu, Chunming ; Sahi, Vijendra ; Chen, Jian ; Parce, J. Wallace ; Empedocles, Stephen ; Goldman, Jay L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c687t-fb431f0940fd0684d369bb3327b5810ec7dd09515e48fcf592ed5d0c18cbfe4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Low temperature</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>multidisciplinary</topic><topic>Nanotechnology</topic><topic>Plastics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Xiangfeng</creatorcontrib><creatorcontrib>Niu, Chunming</creatorcontrib><creatorcontrib>Sahi, Vijendra</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Parce, J. Wallace</creatorcontrib><creatorcontrib>Empedocles, Stephen</creatorcontrib><creatorcontrib>Goldman, Jay L.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Xiangfeng</au><au>Niu, Chunming</au><au>Sahi, Vijendra</au><au>Chen, Jian</au><au>Parce, J. Wallace</au><au>Empedocles, Stephen</au><au>Goldman, Jay L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance thin-film transistors using semiconductor nanowires and nanoribbons</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2003-09-18</date><risdate>2003</risdate><volume>425</volume><issue>6955</issue><spage>274</spage><epage>278</epage><pages>274-278</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Thin-film transistors (TFTs) are the fundamental building blocks for the rapidly growing field of macroelectronics
1
,
2
. The use of plastic substrates is also increasing in importance owing to their light weight, flexibility, shock resistance and low cost
3
,
4
. Current polycrystalline-Si TFT technology is difficult to implement on plastics because of the high process temperatures required
1
,
2
. Amorphous-Si and organic semiconductor
5
,
6
TFTs, which can be processed at lower temperatures, but are limited by poor carrier mobility. As a result, applications that require even modest computation, control or communication functions on plastics cannot be addressed by existing TFT technology. Alternative semiconductor materials
7
,
8
that could form TFTs with performance comparable to or better than polycrystalline or single-crystal Si, and which can be processed at low temperatures over large-area plastic substrates, should not only improve the existing technologies, but also enable new applications in flexible, wearable and disposable electronics. Here we report the fabrication of TFTs using oriented Si nanowire thin films or CdS nanoribbons as semiconducting channels. We show that high-performance TFTs can be produced on various substrates, including plastics, using a low-temperature assembly process. Our approach is general to a broad range of materials including high-mobility materials (such as InAs or InP).</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>13679911</pmid><doi>10.1038/nature01996</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2003-09, Vol.425 (6955), p.274-278 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_73654757 |
source | SpringerLink Journals; Nature Journals Online |
subjects | Applied sciences Electronics Exact sciences and technology Fabrication Humanities and Social Sciences letter Low temperature Microelectronic fabrication (materials and surfaces technology) multidisciplinary Nanotechnology Plastics Science Science (multidisciplinary) Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors Thin films Transistors |
title | High-performance thin-film transistors using semiconductor nanowires and nanoribbons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20thin-film%20transistors%20using%20semiconductor%20nanowires%20and%20nanoribbons&rft.jtitle=Nature%20(London)&rft.au=Duan,%20Xiangfeng&rft.date=2003-09-18&rft.volume=425&rft.issue=6955&rft.spage=274&rft.epage=278&rft.pages=274-278&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature01996&rft_dat=%3Cgale_proqu%3EA187749464%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204508377&rft_id=info:pmid/13679911&rft_galeid=A187749464&rfr_iscdi=true |